3.求適合下列條件的圓錐曲線方程:
(1)長軸長是短軸長的3倍,經(jīng)過點(3,0)的橢圓標準方程.
(2)已知拋物線的頂點在原點,準線與其平行線x=2的距離為3,求拋物線標準方程.

分析 (1)由題意,a=3,b=1,即可求出橢圓的標準方程;
(2)由題意,設拋物線的標準方程為y2=2px,準線方程是x=-$\frac{p}{2}$,拋物線的準線方程為x=-$\frac{5}{2}$或$\frac{1}{2}$,求出p,即可求出拋物線的方程.

解答 解:(1)由題意,a=3,b=1,
∴橢圓標準方程為$\frac{x^2}{9}+{y^2}=1$;
(2)由題意,設拋物線的標準方程為y2=2px,準線方程是x=-$\frac{p}{2}$,
∵拋物線的準線方程為x=-$\frac{5}{2}$或$\frac{1}{2}$,
∴$\frac{p}{2}$=-$\frac{5}{2}$或$\frac{1}{2}$,解得p=5或-1,
故所求拋物線的標準方程為y2=10x或y2=-2x.

點評 本題考查橢圓、拋物線的方程與性質(zhì),考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知集合A=[-1,3],B=[m,m+6],m∈R.
(1)當m=2時,求A∩∁RB;
(2)若A∪B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知p:x2+2x-8<0,q:(x-1+m)(x-1-m)≤0(m>0).
(1)使p成立的實數(shù)x的取值集合記為A,q成立的實數(shù)x的取值集合記為B,當m=2時,求A∩B;
(2)若p是q的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知直線m、n與平面α,β,m⊥α,n⊥β,若α⊥β,則m、n的位置關(guān)系是( 。
A.平行B.垂直C.相交D.異面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某校為了解高三開學數(shù)學考試的情  況,從高三的所有學生數(shù)學試卷中隨機抽取n份試卷進行成績分析,得到數(shù)學成績頻率分布直方圖(如圖所示),其中成績在[50,60 )的學生人數(shù)為6.試根據(jù)樣本估計“該校高三學生期末數(shù)學考試成績≥70”的 概率為( 。
A.0.7B.0.6C.0.8D.0.65

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設變量x,y滿足約束條件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≥1}\\{x≤2}\end{array}}\right.$,則目標函數(shù)z=-2x+y的最大值為( 。
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知圓C:x2+y2=4,則過圓上點$(1,\sqrt{3})$的切線方程是$x+\sqrt{3}y-4=0$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=2a(cos2x+sinxcosx)+b
(1)當a=1時,求函數(shù)f(x)的周期及單調(diào)遞增區(qū)間
(2)當a>0,且x∈[0,$\frac{π}{2}$]時,f(x)的最大值為4,最小值為3,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)y=sin2x+2cosx在R上的值域是[-2,2].

查看答案和解析>>

同步練習冊答案