(本小題滿分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,
使平面AEFD⊥平面EBCF (如圖).
(1)當(dāng)時(shí),求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角D-BF-C的余弦值.

(1)見解析;(2)時(shí)有最大值為.(3)二面角的余弦值為-

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).

(1)求證:EF ∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

( 12分)如圖,在四棱錐中,側(cè)面是正三角形,底面是邊長為2的正方形,側(cè)面平面的中點(diǎn).

①求證:平面;
②求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐的底面為矩形,且,
,,(Ⅰ)平面與平面是否垂直?并說明理由;(Ⅱ)求直線與平面所成角的正弦值. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面和直線,給出條件:
;②;③;④;⑤.
(理)(i)當(dāng)滿足條件          時(shí),有;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,平面平面,是以為斜邊的等腰直角三角形,分別為,,的中點(diǎn),,
(1)設(shè)的中點(diǎn),證明:平面;
(2)在內(nèi)是否存在一點(diǎn),使平面,若存在,請找出點(diǎn)M,并求FM的長;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)如圖,正方體中.
(Ⅰ)求所成角的大;
(Ⅱ)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,、分別是正三棱柱的棱、的中點(diǎn),且棱,.

(Ⅰ)求證:平面
(Ⅱ)在棱上是否存在一點(diǎn),使二面角的大小為,若存在,求的長;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是矩形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.

查看答案和解析>>

同步練習(xí)冊答案