【題目】函數(shù),則下列結(jié)論錯誤的是( )
A. 是偶函數(shù) B. 的值域是
C. 方程的解只有 D. 方程的解只有
【答案】C
【解析】
根據(jù)相關(guān)知識對給出的四個選項分別進(jìn)行分析、判斷后可得結(jié)論.
對于A,當(dāng)為有理數(shù)時,有;當(dāng)為無理數(shù)時,有,所以函數(shù)為偶函數(shù),所以A正確.
對于B,由題意得函數(shù)的值域為,所以B正確.
對于C,若為有理數(shù),則方程f(f(x))=f(1)=1=f(x)恒成立;若為無理數(shù),則方程f(f(x))=f(0)=1≠f(x),此時無滿足條件的x,故方程f(f(x))=f(x)的解為任意有理數(shù),所以C不正確.
對于D,若x為有理數(shù),則方程f(f(x))=f(1)=1,此時x=1;若x為無理數(shù),則方程f(f(x))=f(0)=1,此時無滿足條件的x,故方程f(f(x))=x的解為x=1,所以D正確.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,則滿足f(f(a))=2f(a)的a的取值范圍是( )
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解湖南各景點在大眾中的熟知度,隨機(jī)對15~65歲的人群抽樣了n人,回答問題“湖南省有哪幾個著名的旅游景點?”統(tǒng)計結(jié)果如下圖表.
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù) |
第1組 | [15,25) | a | 0.5 |
第2組 | [25,35) | 18 | x |
第3組 | [35,45) | b | 0.9 |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 | y |
(1)分別求出a,b,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機(jī)抽取2人,求所抽取的人中恰好沒有第3組人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)頂點在原點,焦點在軸上的拋物線過點,過作拋物線的動弦, ,并設(shè)它們的斜率分別為, .
(Ⅰ)求拋物線的方程;
(Ⅱ)若,求證:直線的斜率為定值,并求出其值;
(III)若,求證:直線恒過定點,并求出其坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題方程表示雙曲線;命題不等式的解集是. 為假, 為真,求的取值范圍.
【答案】
【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.
試題解析:
真
,
真 或
∴
真假
假真
∴范圍為
【題型】解答題
【結(jié)束】
18
【題目】如圖,設(shè)是圓上的動點,點是在軸上的投影, 為上一點,且.
(1)當(dāng)在圓上運(yùn)動時,求點的軌跡的方程;
(2)求過點且斜率為的直線被所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓的中心為原點,長軸在軸上,上頂點為,左,右焦點分別為,線段的中點分別為,且 是面積為4的直角三角形.
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過做直線交橢圓于兩點,使,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線 的極坐標(biāo)方程是 ,以極點為原點 ,極軸為 軸正半軸(兩坐標(biāo)系取相同的單位長度)的直角坐標(biāo)系 中,曲線 的參數(shù)方程為: ( 為參數(shù)).
(1)求曲線 的直角坐標(biāo)方程與曲線 的普通方程;
(2)將曲線 經(jīng)過伸縮變換 后得到曲線 ,若 分別是曲線 和曲線 上的動點,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品生產(chǎn)廠家生產(chǎn)一種產(chǎn)品,每生產(chǎn)這種產(chǎn)品 (百臺),其總成本為萬元,其中固定成本為42萬元,且每生產(chǎn)1百臺的生產(chǎn)成本為15萬元總成本固定成本生產(chǎn)成本銷售收入萬元滿足,假定該產(chǎn)品產(chǎn)銷平衡即生產(chǎn)的產(chǎn)品都能賣掉,根據(jù)上述條件,完成下列問題:
寫出總利潤函數(shù)的解析式利潤銷售收入總成本;
要使工廠有盈利,求產(chǎn)量的范圍;
工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時, f(x)=-x+1
(1)求f(0),f(2);
(2)求函數(shù)f(x)的解析式;
(3)若f(a-1)<3,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com