13.化簡:$\frac{sin(60°+θ)+cos120°sinθ}{cosθ}$.

分析 直接利用兩角和與差的正弦函數(shù)化簡求解即可.

解答 解:原式=$\frac{sin60°cosθ+cos60°sinθ-cos60°sinθ}{cosθ}$                  …(5分)
=$\frac{sin60°cosθ}{cosθ}$                                 …(8分)
=sin 60°=$\frac{\sqrt{3}}{2}$                              …(10分)

點(diǎn)評 本題考查三角函數(shù)化簡求值,兩角和與差的三角函數(shù),考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,左、右焦點(diǎn)分別為F1、F2,過F1的直線交橢圓于A、B兩點(diǎn),△AF1F2的周長為6.
(1)求橢圓C的方程;
(2)當(dāng)直線AB的斜率為1時,求△F2AB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了解甲、乙兩個快遞公司的工作狀況,假設(shè)同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月投遞的快遞件數(shù)記錄結(jié)果中分別隨機(jī)抽取8天的數(shù)據(jù)如下:
甲公司某員工A:32    33   33    35   36   39   33    41
乙公司某員工B:42    36   36    34   37   44   42     36
(I)根據(jù)兩組數(shù)據(jù)完成甲、乙兩個快遞公司某員工A和某員工B投遞快遞件數(shù)的莖葉圖,并通過莖葉圖,對員工A和員工B投遞快遞件數(shù)作比較,寫出一個統(tǒng)計結(jié)論:

統(tǒng)計結(jié)論:通過莖葉圖可以看出,乙公司某員工B投遞快遞件數(shù)的平均值高于甲公司某員工A投遞快遞件數(shù)的平均值
(II)請根據(jù)甲公司員工A和乙公司員工B分別隨機(jī)抽取的8天投遞快遞件數(shù),試估計甲公司員工比乙公司員工該月投遞快遞件數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.11001101(2)=205(10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若cosθ=$\frac{1}{3}$,且270°<θ<360°,則cos$\frac{θ}{2}$等于( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{6}}}{3}$C.±$\frac{{\sqrt{6}}}{3}$D.-$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若(ax2-$\frac{1}{x}$)6的展開式中x3的系數(shù)是20,則實(shí)數(shù)a=(  )
A.2B.1C.1或-1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué) (男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)
幾何題代數(shù)題合計
25530
101020
合計351550
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
則在犯錯的概率不超過0.025的前提下認(rèn)為視覺和空間能力與性別有關(guān) (填“有關(guān)”或“無關(guān)”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知復(fù)數(shù)z1=2+a2+i,z2=3a+ai(a為實(shí)數(shù),i虛數(shù)單位)且z1+z2是純虛數(shù).
(1)求a的值,并求z12的共軛復(fù)數(shù);
(2)求$\frac{{z}_{1}}{{z}_{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,三棱柱ABC一A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1中點(diǎn),F(xiàn)在AB上,且CF⊥AB,AC=BC=1,AA1=3.
(I)求證:CF∥平面AEB1;
(Ⅱ)求平面ABC與平面AB1E所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案