21世紀(jì)我國將全面實(shí)現(xiàn)小康社會(huì),家庭理財(cái)將成為增加居民收入新亮點(diǎn),某投資機(jī)構(gòu)根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).已知函數(shù)f(x)=alnx-ax-3(a∈R)

(1)分別寫出兩種產(chǎn)品的收益與投資的函數(shù)關(guān)系;
(2)若你家現(xiàn)有20萬元資金,全部用于投資理財(cái),問:請你根據(jù)所學(xué)知識幫助你的父母來合理分配資金獲得最大收益,并計(jì)算最大收益為多少萬元?
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意,設(shè)f(x)=kx,g(x)=a
x
,由圖可求出k,a,從而得到函數(shù)關(guān)系式;
(2)設(shè)投資債券類產(chǎn)品x萬元,則股票類投資為20-x萬元,則y=f(x)+g(20-x)=
1
8
x+
1
2
20-x
,(0≤x≤20),利用換元法求函數(shù)的最值.
解答: 解:(1)設(shè)f(x)=kx,g(x)=a
x
,
由題意得,f(1)=k=
1
8
,g(1)=a=
1
2
,
則f(x)=
1
8
x,(x≥0);g(x)=
1
2
x
,(x≥0).
(2)設(shè)投資債券類產(chǎn)品x萬元,則股票類投資為20-x萬元,
由題意得,y=f(x)+g(20-x)
=
1
8
x+
1
2
20-x
,(0≤x≤20),
20-x
=t,
則y=-
1
8
(t2-20)+
1
2
t=-
1
8
(t-2)2+3,
故當(dāng)t=2,即x=16萬元時(shí),收益最大,
此時(shí),ymax=3萬元.
點(diǎn)評:本題考查了學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力及函數(shù)的最值及解析式的求法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+1
x
,數(shù)列{an}滿足a1=1,an+1=f(
1
an
), n∈N*

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令Tn=a1-a2+a3-a4+…+a2n-1-a2n,求Tn;
(3)令bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+…+bn,Sn
m-2005
2
對一切n∈N*成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用二項(xiàng)式定理證明:
(1)32n+2-8n-9能被64整除(n∈N);
(2)2n>n2(n≥5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

爸爸去哪兒節(jié)目組安排星娃們露營,村長要求,F(xiàn)eyman、楊陽洋、貝兒依次在A、B、C三處扎篷.AB=8米,BC=4米,AC=6米.現(xiàn)村長給多多一個(gè)難題,要求她安扎在B、C兩點(diǎn)之間的連線段的D處,且∠ADC=60°.問多多與Feyman相距
 
米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市出租車收費(fèi)標(biāo)準(zhǔn)如下:起步價(jià)為8元,起步里程為3km(不超過3km按起步價(jià)付費(fèi));超過3km但不超過8km時(shí),超過部分按每千米2.15元收費(fèi);超過8km時(shí),超過部分按每千米2.85元收費(fèi),另每次乘坐需付燃油附加費(fèi)1元.現(xiàn)某人乘坐一次出租車付費(fèi)22.6元,則此次出租車駛了多少km?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在坐標(biāo)原點(diǎn),左焦點(diǎn)為F(-
3
,0),右頂點(diǎn)為D(2,0),設(shè)點(diǎn)A(2,2).
(Ⅰ)求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)P是橢圓上的動(dòng)點(diǎn),求線段PA中點(diǎn)M的軌跡方程;
(Ⅲ)過點(diǎn)(-1,0)的直線L交橢圓于點(diǎn)B,C,求△ABC面積等于4的直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的個(gè)數(shù)是( 。
①“在三角形ABC中,若sinA>sinB,則A>B”的逆命題是真命題;
②命題p:x≠2或y≠3,命題q:x+y≠5則p是q的必要不充分條件;
③“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”;
④從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是系統(tǒng)抽樣.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,線段AB的兩個(gè)端點(diǎn)A、B分別在x軸,y軸上滑動(dòng),|AB|=3,點(diǎn)M是線段AB上一點(diǎn),且|AM|=1點(diǎn)M隨線段AB的滑動(dòng)而運(yùn)動(dòng).
(Ⅰ)求動(dòng)點(diǎn)M的軌跡E的方程
(Ⅱ)過定點(diǎn)N(
3
,0)
的直線l交曲線E于C、D兩點(diǎn),交y軸于點(diǎn)P,若
PC
1
CN
,
PD
2
DN
,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直角△ABC中,∠C=90°,AB=2
5
,sinB=
5
5
,點(diǎn)P為邊BC上一動(dòng)點(diǎn),PD∥AB,PD交AC于點(diǎn)D,連結(jié)AP.
(1)求AC、BC的長;
(2)設(shè)PC的長為x,△ADP的面積為y.當(dāng)x為何值時(shí),y最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案