【題目】某學校餐廳新推出A、B、C、D四款套餐,某一天四款套餐銷售情況的條形圖如下.為了了解同學對新推出的四款套餐的評價,對每位同學都進行了問卷調查,然后用分層抽樣的方法從調查問卷中抽取20份進行統(tǒng)計,統(tǒng)計結果如下面表格所示:

滿意

一般

不滿意

A套餐

50%

25%

25%

B套餐

80%

0

20%

C套餐

50%

50%

0

D套餐

40%

20%

40%

(Ⅰ)若同學甲選擇的是A款套餐,求甲的調查問卷被選中的概率;
(Ⅱ)若想從調查問卷被選中且填寫不滿意的同學中再選出2人進行面談,求這兩人中至少有一人選擇的是D款套餐的概率.

【答案】解:(Ⅰ)由條形圖可得,選擇A,B,C,D四款套餐的學生共有200人, 其中選A款套餐的學生為40人,
由分層抽樣可得從A款套餐問卷中抽取了 份.
設事件M=“同學甲被選中進行問卷調查”,

答:若甲選擇的是A款套餐,甲被選中調查的概率是0.1.
(II) 由圖表可知,選A,B,C,D四款套餐的學生分別接受調查的人數(shù)為4,5,6,5.其中不滿意的人數(shù)分別為1,1,0,2個.
記對A款套餐不滿意的學生是a;對B款套餐不滿意的學生是b;對D款套餐不滿意的學生是c,d.
設事件N=“從填寫不滿意的學生中選出2人,至少有一人選擇的是D款套餐”
從填寫不滿意的學生中選出2人,共有(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)6個基本事件,
而事件N有(a,c),(a,d),(b,c),(b,d),(c,d)5個基本事件,

答:這兩人中至少有一人選擇的是D款套餐的概率是
【解析】(I)由條形圖可得,選擇A,B,C,D四款套餐的學生共有200人,其中選A款套餐的學生為40人,由分層抽樣可得從A款套餐問卷中抽取的人數(shù).(II)由圖表可知,選A,B,C,D四款套餐的學生分別接受調查的人數(shù)為4,5,6,5.其中不滿意的人數(shù)分別為1,1,0,2個,做出所有的事件和滿足條件的事件數(shù),得到概率.
【考點精析】認真審題,首先需要了解頻率分布直方圖(頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求證: 函數(shù)是偶函數(shù);

(2)若對任意的,都有,求實數(shù)的取值范圍;

(3)若函數(shù)有且僅有個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=lnx,g(x)=(2﹣a)(x﹣1)﹣2f(x). (Ⅰ)當a=1時,求函數(shù)g(x)的單調區(qū)間;
(Ⅱ)設F(x)=|f(x)|+ (b>0).對任意x1 , x2∈(0,2],x1≠x2 , 都有 <﹣1,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xoy中,曲線C1 (t為參數(shù),t≠0),其中0≤α<π,在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2 cosθ. (Ⅰ)求C2與C3交點的直角坐標;
(Ⅱ)若C2與C1相交于點A,C3與C1相交于點B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

若曲線在點 處的切線與直線 垂直,求實數(shù)的值;

(Ⅱ)討論函數(shù) 的單調性;

(Ⅲ)當 時,記函數(shù) 的最小值為 ,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高中政教處為了調查學生對一帶一路的關注情況,在全校組織了一帶一路知多少的知識問卷測試,并從中隨機抽取了12份問卷,得到其測試成績(百分制)的莖葉圖如下:.

(1)寫出該樣本的中位數(shù),若該校共有3000名學生,試估計該校測試成績在70分以上的人數(shù);

(2)從所抽取的70分以上的學生中再隨機選取4人,記表示測試成績在80分以上的人數(shù),的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 =(2,﹣ ), =(sin2 +x),cos2x).令f(x)= ﹣1,x∈R,函數(shù)g(x)=f(x+φ),φ∈(0, )的圖象關于(﹣ ,0)對稱. (Ⅰ) 求f(x)的解析式,并求φ的值;
(Ⅱ)在△ABC中sinC+cosC=1﹣ ,求g(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設Sn是數(shù)列{an}的前n項和,已知a1=3,an+1=2Sn+3(n∈N) (I)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=(2n﹣1)an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)當時,若在區(qū)間上的最小值為-2,其中是自然對數(shù)的底數(shù),求實數(shù)的取值范圍;

查看答案和解析>>

同步練習冊答案