如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形, AF∥DE,AF⊥FE,AF=AD=2 DE=2.
(Ⅰ) 求異面直線EF與BC所成角的大。
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為,求AB的長(zhǎng).
(Ⅰ) 30°(Ⅱ)
解析試題分析: (Ⅰ) 延長(zhǎng)AD,F(xiàn)E交于Q.
因?yàn)锳BCD是矩形,所以
BC∥AD,
所以∠AQF是異面直線EF與BC所成的角.
在梯形ADEF中,因?yàn)镈E∥AF,AF⊥FE,AF=2,DE=1得
∠AQF=30°.即異面直線EF與BC所成角的大小為30°. 7分
(Ⅱ) 方法一:
設(shè)AB=x.取AF的中點(diǎn)G.由題意得DG⊥AF.
因?yàn)槠矫鍭BCD⊥平面ADEF,AB⊥AD,所以AB⊥平面ADEF,
所以AB⊥DG.所以DG⊥平面ABF.
過(guò)G作GH⊥BF,垂足為H,連結(jié)DH,則DH⊥BF,
所以∠DHG為二面角A-BF-D的平面角.
在直角△AGD中,AD=2,AG=1,得DG=.
在直角△BAF中,由=sin∠AFB=,得=,
所以GH=.
在直角△DGH中,DG=,GH=,得DH=.
因?yàn)閏os∠DHG==,得x=,
所以AB=. 15分
方法二:設(shè)AB=x.
以F為原點(diǎn),AF,F(xiàn)Q所在的直線分別為x軸,y軸建立空間直角坐標(biāo)系Fxyz.則
F(0,0,0),A(-2,0,0),E(,0,0),D(-1,,0),B(-2,0,x),
所以=(1,-,0),=(2,0,-x).
因?yàn)镋F⊥平面ABF,所以平面ABF的法向量可取=(0,1,0).
設(shè)=(x1,y1,z1)為平面BFD的法向量,則
所以,可取=(,1,).
因?yàn)閏os<,>==,得x=,
所以AB=. 15分
考點(diǎn):本題主要考查空間點(diǎn)、線、面位置關(guān)系,異面直線所成角、二面角等基礎(chǔ)知識(shí),空間向量的應(yīng)用,同時(shí)考查空間想象能力和運(yùn)算求解能力。
點(diǎn)評(píng):如何用傳統(tǒng)的方法求解此類問(wèn)題,要緊扣相應(yīng)的判定定理和性質(zhì)定理,還要注意各類角的取值范圍;如果用空間向量求解,思路比較簡(jiǎn)單,但是運(yùn)算比較復(fù)雜,要仔細(xì)運(yùn)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,空間四邊形的對(duì)棱、成的角,且,平行于與的截面分別交、、、于、、、.
(1)求證:四邊形為平行四邊形;
(2)在的何處時(shí)截面的面積最大?最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知棱柱的底面是菱形,且面,,,為棱的中點(diǎn),為線段的中點(diǎn),
(Ⅰ)求證: 面;
(Ⅱ)判斷直線與平面的位置關(guān)系,并證明你的結(jié)論;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱錐中,是的中點(diǎn),,,,,二面角的大小為.
(1)證明:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱錐P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一點(diǎn),且CD平面PAB
(1)求證:AB平面PCB;
(2)求異面直線AP與BC所成角的大。
(3)求二面角C-PA-B 的大小的余弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com