已知是橢圓上兩點,點的坐標(biāo)為.
(1)當(dāng)關(guān)于點對稱時,求證:
(2)當(dāng)直線經(jīng)過點時,求證:不可能為等邊三角形.
(1)詳見解析,(2)詳見解析.

試題分析:(1)利用“點代法”求點的坐標(biāo)關(guān)系,在求解過程中證明結(jié)論.因為關(guān)于點對稱,所以,代入橢圓方程得,兩式相減得,所以(2)本題實質(zhì)為“弦中點”問題,設(shè)中點為,由“點差法”得又假設(shè)為等邊三角形時,有所以這與弦中點在橢圓內(nèi)部矛盾,所以假設(shè)不成立.
試題解析:(1)證明:
因為在橢圓上,
所以                 1分
因為關(guān)于點對稱,
所以,                2分
代入②得③,
由①和③消解得,                     4分
所以.                     5分
(2)當(dāng)直線斜率不存在時,
可得,不是等邊三角形.           6分
當(dāng)直線斜率存在時,顯然斜率不為0.
設(shè)直線,中點為
聯(lián)立消去,         7分

,得到①                 8分
,
所以
所以                     10分
假設(shè)為等邊三角形,則有
又因為,
所以,即,          11分
化簡,解得       12分
這與①式矛盾,所以假設(shè)不成立.
因此對于任意不能使得,故不能為等邊三角形.      14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理)已知點是平面直角坐標(biāo)系上的一個動點,點到直線的距離等于點到點的距離的2倍.記動點的軌跡為曲線.
(1)求曲線的方程;
(2)斜率為的直線與曲線交于兩個不同點,若直線不過點,設(shè)直線的斜率分別為,求的數(shù)值;
(3)試問:是否存在一個定圓,與以動點為圓心,以為半徑的圓相內(nèi)切?若存在,求出這個定圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的方程為,其中.
(1)求橢圓形狀最圓時的方程;
(2)若橢圓最圓時任意兩條互相垂直的切線相交于點,證明:點在一個定圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中心在原點,一個焦點F(-2,0),且長軸長與短軸長的比為,
(1)求橢圓C的方程;
(2)設(shè)點M(m,0)在橢圓C的長軸上,設(shè)點P是橢圓上的任意一點,若當(dāng)最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:()的短軸長為2,離心率為
(1)求橢圓C的方程
(2)若過點M(2,0)的引斜率為的直線與橢圓C相交于兩點G、H,設(shè)P為橢圓C上一點,且滿足為坐標(biāo)原點),當(dāng)時,求實數(shù)的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的焦距為2,且過點.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右焦點分別為,過點的直線與橢圓C交于兩點.
①當(dāng)直線的傾斜角為時,求的長;
②求的內(nèi)切圓的面積的最大值,并求出當(dāng)的內(nèi)切圓的面積取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓的焦點分別為,弦過點,則的周長為
A.B.C.8D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1,F(xiàn)2是橢圓=1的左、右兩個焦點,若橢圓上滿足PF1⊥PF2的點P有且只有兩個,則離心率e的值為(   )
A.B.C.D..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓的兩個焦點分別為,點在橢圓上,且,則該橢圓的離心率為          

查看答案和解析>>

同步練習(xí)冊答案