【題目】已知函數(shù)f (x)=若函數(shù)f (x)的圖象與直線y=x有三個不同的公共點,則實數(shù)a的取值集合為________.
【答案】{-20,-16}
【解析】當x<1時,f (x)=sin x與y=x的圖象有1個交點,為(0,0),則當x≥1時,f (x)=x3-9x2+25x+a與y=x的圖象有2個交點,即關于x的方程x3-9x2+24x+a=0在x∈[1,+∞)有兩個不同解.令g(x)=x3-9x2+24x+a,x∈[1,+∞),則g′(x)=3x2-18x+24=3(x-2)(x-4),令g′(x)=0,解得x=2或x=4,且當x∈[1,2)時,g′(x)>0,g(x)單調遞增;當x∈(2,4)時,g′(x)<0,g(x)單調遞減;當x∈(4,+∞)時,g′(x)>0,g(x)單調遞增.又因為g(1)=g(4)=16+a,所以g(2)=20+a=0或g(4)=g(1)=16+a=0,解得a=-20或a=-16,故實數(shù)a的取值集合為{-20,-16}.
故答案為:{-20,-16}
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點,O為坐標原點.
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+與雙曲線C2恒有兩個不同的交點A和B,且,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電動汽車“行車數(shù)據(jù)”的兩次記錄如下表:
記錄時間 | 累計里程 (單位:公里) | 平均耗電量(單位:公里) | 剩余續(xù)航里程 (單位:公里) |
2019年1月1日 | 4000 | 0.125 | 280 |
2019年1月2日 | 4100 | 0.126 | 146 |
(注:累計里程指汽車從出廠開始累計行駛的路程,累計耗電量指汽車從出廠開始累計消耗的電量,平均耗電量=,剩余續(xù)航里程=,下面對該車在兩次記錄時間段內行駛100公里的耗電量估計正確的是
A. 等于12.5B. 12.5到12.6之間
C. 等于12.6D. 大于12.6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f (x)=x2-aln x-1,函數(shù)F(x)=.
(1)如果函數(shù)f (x)的圖象上的每一點處的切線斜率都是正數(shù),求實數(shù)a的取值范圍;
(2)當a=2時,你認為函數(shù)y=的圖象與y=F(x)的圖象有多少個公共點?請證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標原點,求|MN|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線: ,若存在實數(shù)使得一條曲線與直線有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于,則稱此曲線為直線的“絕對曲線”.下面給出的四條曲線方程:
①;②;③;④.
其中直線的“絕對曲線”的條數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的正方形中,分別為的中點,為的中點,沿將正方形折起,使重合于點,在構成的四面體中,下列結論錯誤的是
A. 平面
B. 直線與平面所成角的正切值為
C. 四面體的內切球表面積為
D. 異面直線和所成角的余弦值為
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com