【題目】已知拋物線和直線,的焦點(diǎn),上一點(diǎn),過(guò)作拋物線的一條切線與軸交于,則外接圓面積的最小值為( )

A. B. C. D.

【答案】A

【解析】

設(shè)出過(guò)點(diǎn)P的切線方程將切線方程與拋物線方程聯(lián)立,即可得到切線斜率,進(jìn)而得到點(diǎn)Q坐標(biāo),利用斜率乘積為-1可判斷出為直角三角形,外接圓的圓心即為斜邊的中點(diǎn),即可求出圓的半徑,從而得到圓的面積,即可得到最值.

將直線l與拋物線聯(lián)立,即直線l與拋物線相切且切點(diǎn)為(1,2),又上一點(diǎn),

當(dāng)點(diǎn)P為切點(diǎn)(1,2)時(shí),Q(0,1),F(1,0),此時(shí)為直角三角形,且外接圓的半徑為1,故圓的面積為

當(dāng)點(diǎn)P不為切點(diǎn)時(shí),設(shè)點(diǎn),切線斜率為k,則切線方程為,將切線方程與拋物線方程聯(lián)立,其中,,此時(shí)切線方程化簡(jiǎn)得,此時(shí)點(diǎn)Q,可得,為直角三角形,PF中點(diǎn)M即為外接圓的圓心,則,面積為,當(dāng)時(shí)面積取到最小值為,

綜上,面積最小值為,

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對(duì)統(tǒng)計(jì)圖理解錯(cuò)誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬(wàn)件

B. 2018年1~4月的業(yè)務(wù)量同比增長(zhǎng)率均超過(guò)50%,在3月底最高

C. 從兩圖來(lái)看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長(zhǎng)率并不完全一致

D. 從1~4月來(lái)看,該省在2018年快遞業(yè)務(wù)收入同比增長(zhǎng)率逐月增長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求的極坐標(biāo)方程;

(2)若曲線的極坐標(biāo)方程為,直線在第一象限的交點(diǎn)為,與的交點(diǎn)為(異于原點(diǎn)),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示程序框圖,若輸出的值為,在條件框內(nèi)應(yīng)填寫( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《孫子算經(jīng)》中有如下問(wèn)題:“今有三女,長(zhǎng)女五日一歸,中女四日一歸,少女三日一歸.問(wèn):三女何日相會(huì)?”意思是:“一家出嫁的三個(gè)女兒中,大女兒每五天回一次娘家,二女兒每四天回一次娘家,小女兒每三天回一次娘家.三個(gè)女兒從娘家同一天走后,至少再隔多少天三人再次相會(huì)?”假如回娘家當(dāng)天均回夫家,若當(dāng)?shù)仫L(fēng)俗正月初二都要回娘家,則從正月初三算起的一百天內(nèi),有女兒回娘家的天數(shù)有(

A.58B.59C.60D.61

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求函數(shù)的零點(diǎn);

)若函數(shù)對(duì)任意實(shí)數(shù)都有成立,求函數(shù)的解析式;

)若函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是正方體的平面展開(kāi)圖,在這個(gè)正方體中,正確的命題是( )

A. BD與CF成60°角 B. BD與EF成60°角 C. AB與CD成60°角 D. AB與EF成60°角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)共產(chǎn)黨第十九次全國(guó)代表大會(huì)于20171018日至1024日在北京召開(kāi),會(huì)議提出“決勝全面建成小康社會(huì)”.某市積極響應(yīng)開(kāi)展“脫貧攻堅(jiān)”,為2020年“全面建成小康社會(huì)”貢獻(xiàn)力量.為了解該市農(nóng)村“脫貧攻堅(jiān)”情況,從某縣調(diào)查得到農(nóng)村居民2013年至2017年家庭人均純收入(單位:百元)的數(shù)據(jù)如表:

年 份

2013

2014

2015

2016

2017

年人均純收入百元

47

55

61

65

72

注:小康的標(biāo)準(zhǔn)是農(nóng)村居民家庭年人均純收入達(dá)到8000元.

1)求關(guān)于的線性回歸方程;

2)利用(1)中的回歸方程,預(yù)測(cè)2020年該縣農(nóng)村居民家庭年人均純收入指標(biāo)能否達(dá)到“全面建成小康社會(huì)”的標(biāo)準(zhǔn)?

附:回歸直線 斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過(guò)點(diǎn)A(-4,4)且焦點(diǎn)在x軸.

(1)求拋物線方程;

(2)直線l過(guò)定點(diǎn)B(-1,0)與該拋物線相交所得弦長(zhǎng)為8,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案