函數(shù)f(x)和g(x)的圖象關(guān)于原點對稱,且f(x)=x2+2x、
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|.
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實數(shù)λ的取值范圍.
解:(Ⅰ)設(shè)函數(shù)y=f(x)的圖象上任意一點Q(x
0,y
0)關(guān)于原點的對稱點為P(x,y),
則
即
∵點Q(x
0,y
0)在函數(shù)y=f(x)的圖象上
∴-y=x
2-2x,即y=-x
2+2x,故g(x)=-x
2+2x
(Ⅱ)由g(x)≥f(x)-|x-1|,可得2x
2-|x-1|≤0
當(dāng)x≥1時,2x
2-x+1≤0,此時不等式無解.
當(dāng)x<1時,2x
2+x-1≤0,解得
.
因此,原不等式的解集為
.
(Ⅲ)h(x)=-(1+λ)x
2+2(1-λ)x+1
①當(dāng)λ=-1時,h(x)=4x+1在[-1,1]上是增函數(shù),∴λ=-1
②當(dāng)λ≠-1時,對稱軸的方程為x=
.
。┊(dāng)λ<-1時,
,解得λ<-1.
ⅱ)當(dāng)λ>-1時,
,解得-1<λ≤0.綜上,λ≤0.
分析:(Ⅰ)在函數(shù)y=f(x)的圖象上任意一點Q(x
0,y
0),設(shè)關(guān)于原點的對稱點為P(x,y),再由中點坐標(biāo)公式,求得Q的坐標(biāo)代入f(x)=x
2+2x即可.
(Ⅱ)將f(x)與g(x)的解析式代入轉(zhuǎn)化為2x
2-|x-1|≤0,再通過分類討論去掉絕對值,轉(zhuǎn)化為一元二次不等式求解.
(Ⅲ)將f(x)與g(x)的解析式代入可得h(x)=-(1+λ)x
2+2(1-λ)x+1,再用二次函數(shù)法研究其單調(diào)性.
點評:本題主要考查求對稱區(qū)間上的解析式,解不等式及研究函數(shù)的單調(diào)性,屬中檔題.