點(diǎn)P在橢圓數(shù)學(xué)公式上,橢圓的左準(zhǔn)線為直線l,左焦點(diǎn)為F,作PQ⊥l于點(diǎn)Q,若P、F、Q三點(diǎn)構(gòu)成一個(gè)等腰直角三角形,則該橢圓的離心率為________.


分析:根據(jù)橢圓的左準(zhǔn)線為直線l,左焦點(diǎn)為F,作PQ⊥l于點(diǎn)Q,可得,利用P、F、Q三點(diǎn)構(gòu)成一個(gè)等腰直角三角形,即可求得橢圓的離心率.
解答:∵橢圓的左準(zhǔn)線為直線l,左焦點(diǎn)為F,作PQ⊥l于點(diǎn)Q

∵P、F、Q三點(diǎn)構(gòu)成一個(gè)等腰直角三角形


故答案為:
點(diǎn)評(píng):本題考查橢圓的第二定義與性質(zhì),考查等腰直角三角形的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)如圖1,已知定點(diǎn)F1(-2,0)、F2(2,0),動(dòng)點(diǎn)N滿足|
ON
|=1(O為坐標(biāo)原點(diǎn)),
F1M
=2
NM
MP
MF2
(λ∈R),
F1M
PN
=0,求點(diǎn)P的軌跡方程.
精英家教網(wǎng)
(2)如圖2,已知橢圓C:
x2
4
+y2=1的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓上,且異于點(diǎn)A、B,直線AP、BP與直線l:y=-2分別交于點(diǎn)M、N,
(ⅰ)設(shè)直線AP、BP的斜率分別為k1、k2,求證:k1•k2為定值;
(ⅱ)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓中心在原點(diǎn),兩焦點(diǎn)F1,F2x軸上,點(diǎn)P在橢圓上.若橢圓的離心率為,△PF1F2的周長(zhǎng)為12,則橢圓的標(biāo)準(zhǔn)方程是

A.=1  B.=1 C.=1  D.=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西南寧二中高三3月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

點(diǎn)P在橢圓上,橢圓的左準(zhǔn)線為直線l,左焦點(diǎn)為F,作PQ⊥l于點(diǎn)Q,若P、F、Q三點(diǎn)構(gòu)成一個(gè)等腰直角三角形,則該橢圓的離心率為      

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣西省高三高考模擬考試文數(shù) 題型:填空題

如圖,點(diǎn)P在橢圓上,F(xiàn)1、F2分別

是橢圓的左、右焦點(diǎn),過點(diǎn)P作橢圓右準(zhǔn)線的垂線,垂足為M,

若四邊形為菱形,則橢圓的離心率是            

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)P在橢圓上,F1F2分別是橢圓的左、右焦點(diǎn),過點(diǎn)P作橢圓右準(zhǔn)線的垂線,垂足為M,若四邊形為菱形,則橢圓的離心率是         .

查看答案和解析>>

同步練習(xí)冊(cè)答案