【題目】已知圓經(jīng)過(guò),圓心在直線上,過(guò)點(diǎn),且斜率為的直線交圓相交于兩點(diǎn).

(Ⅰ)求圓的方程;

(Ⅱ)(i)請(qǐng)問(wèn)是否為定值.若是,請(qǐng)求出該定值,若不是,請(qǐng)說(shuō)明理由;

(ii)若為坐標(biāo)原點(diǎn),且,求直線的方程.

【答案】(Ⅰ);(Ⅱ)(i)7; (ii).

【解析】試題分析:(1) 設(shè)圓的方程為,將已知條件代入,解出方程組,即可求得圓的方程;(2) (i)過(guò)點(diǎn)作直線與圓相切,切點(diǎn)為,則,根據(jù)數(shù)量積的定義代入可得為定值;(ii)依題意可知,直線的方程為,聯(lián)立直線與圓方程,消去y,將韋達(dá)定理代入 ,即可求出,進(jìn)而求得直線方程.

試題解析:(Ⅰ)設(shè)圓的方程為

則依題意,得解得∴圓的方程為

)(i)為定值.

過(guò)點(diǎn)作直線與圓相切,切點(diǎn)為,則

,為定值,且定值為7.

(ii)依題意可知,直線的方程為,

設(shè) ,將代入并整理得:

,

, ,

,即,

解得,又當(dāng)時(shí),,所以直線的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2﹣3x﹣10≤0},B={x|m﹣4≤x≤3m+2}.
(1)若A∪B=B,求實(shí)數(shù)m的取值范圍;
(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,
(1)求函數(shù)f(x)的定義域;
(2)求f(﹣1),f(12)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=( x
(1)求當(dāng)x>0時(shí)f(x)的解析式;
(2)畫(huà)出函數(shù)f(x)在R上的圖象;

(3)寫(xiě)出它的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)命題p:x∈R,sinx+cosx>m恒成立,q:x∈R,y=(2m2﹣m)x為增函數(shù).若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.
(1)若AB,求實(shí)數(shù)m的取值范圍;
(2)若A∩B=,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a>0, 是R上的偶函數(shù).
(1)求a的值;
(2)證明:f(x)在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地方政府準(zhǔn)備在一塊面積足夠大的荒地上建一如圖所示的一個(gè)矩形綜合性休閑廣場(chǎng),其總面積為3000平方米,其中場(chǎng)地四周(陰影部分)為通道,通道寬度均為2米,中間的三個(gè)矩形區(qū)域?qū)佋O(shè)塑膠地面作為運(yùn)動(dòng)場(chǎng)地(其中兩個(gè)小場(chǎng)地形狀相同),塑膠運(yùn)動(dòng)場(chǎng)地占地面積為S平方米.
(1)分別寫(xiě)出用x表示y和S的函數(shù)關(guān)系式(寫(xiě)出函數(shù)定義域);
(2)怎樣設(shè)計(jì)能使S取得最大值,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足為等比數(shù)列,且

1)求;

2)設(shè),記數(shù)列的前項(xiàng)和為

①求

②求正整數(shù) k,使得對(duì)任意均有.

查看答案和解析>>

同步練習(xí)冊(cè)答案