如圖,四邊形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.

(1)求證:平面AEC⊥平面ABE;
(2)點(diǎn)F在BE上.若DE∥平面ACF,求的值.
(1)見(jiàn)解析   (2)

(1)證明 因?yàn)锳BCD為矩形,所以AB⊥BC.
因?yàn)槠矫鍭BCD⊥平面BCE,
平面ABCD∩平面BCE=BC,AB?平面ABCD,
所以AB⊥平面BCE.
因?yàn)镃E?平面BCE,所以CE⊥AB.
因?yàn)镃E⊥BE,AB?平面ABE,BE?平面ABE,AB∩BE=B,
所以CE⊥平面ABE.
因?yàn)镃E?平面AEC,所以平面AEC⊥平面ABE.
(2)解 連接BD交AC于點(diǎn)O,連接OF.

因?yàn)镈E∥平面ACF,DE?平面BDE,平面ACF∩平面BDE=OF,
所以DE∥OF.
又因?yàn)榫匦蜛BCD中,O為BD中點(diǎn),
所以F為BE中點(diǎn),即=.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)如圖所示,證明命題“a是平面π內(nèi)的一條直線,bπ外的一條直線(b不垂直于π),c是直線bπ上的投影,若ab,則ac”為真.

(2)寫(xiě)出上述命題的逆命題,并判斷其真假(不需證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知一個(gè)平面α,l為空間中的任意一條直線,那么在平面α內(nèi)一定存在直線b使得(  )
A.l∥bB.l與b相交
C.l與b是異面直線D.l⊥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)P表示一個(gè)點(diǎn),a,b表示兩條直線,α,β表示兩個(gè)平面,給出下列命題,其中正確的命題是(  )
①P∈a,P∈α⇒a?α;
②a∩b=P,b?β⇒a?β;
③a∥b,a?α,P∈b,P∈α⇒b?α;
④α∩β=b,P∈α,P∈β⇒P∈b.
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法中,錯(cuò)誤的個(gè)數(shù)是(   )
①一條直線與一個(gè)點(diǎn)就能確定一個(gè)平面
②若直線平面,則
③若函數(shù)定義域內(nèi)存在滿足 ,則必定是的極值點(diǎn)
④函數(shù)的極大值就是最大值
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,則下列為真命題的是(  )
A.若α⊥β,m⊥α,則m∥βB.若α⊥γ,β⊥γ,則α∥β
C.若m⊥α,n∥m,則n⊥αD.若m∥α,n∥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于直線m,n和平面α,β,γ,有如下四個(gè)命題:
①若m∥α,m⊥n,則n⊥α;
②若m⊥α,m⊥n,則n∥α;
③若α⊥β,γ⊥β,則α∥γ;
④若m⊥α,m∥n,n?β,則α⊥β.
其中正確命題的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)a,b為空間的兩條直線,α,β為空間的兩個(gè)平面,給出下列命題:
①若a∥α,a∥β,則α∥β;②若a⊥α,α⊥β,則α⊥β;
③若a∥α,b∥α,則a∥b; ④若a⊥α,b⊥α,則a∥b.
上述命題中,所有真命題的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列四個(gè)結(jié)論:
⑴兩條不同的直線都和同一個(gè)平面平行,則這兩條直線平行.
⑵兩條不同的直線沒(méi)有公共點(diǎn),則這兩條直線平行.
⑶兩條不同直線都和第三條直線垂直,則這兩條直線平行.
⑷一條直線和一個(gè)平面內(nèi)無(wú)數(shù)條直線沒(méi)有公共點(diǎn),則這條直線和這個(gè)平面平行.
其中正確的個(gè)數(shù)為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案