A. | 0 | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\sqrt{3}$ | D. | -$\frac{{\sqrt{3}}}{2}$ |
分析 根據(jù)框圖的流程依次計算得到本題程序是計算S=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin $\frac{2016π}{3}$的值值,根據(jù)正弦函數(shù)的性質(zhì),計算輸出S的值.
解答 解:由程序框圖知:本程序是計算S=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin $\frac{2016π}{3}$的值,
∵y=sinx的周期是2π,
∴sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin2π=0,即一個周期內(nèi)的6個數(shù)值之和為0,
由于:2016=336×6,
則S=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin $\frac{2016π}{3}$=336×(sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin2π)=336×0=0.
故選:A.
點(diǎn)評 本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程得到本程序的計算公式是解決本題的關(guān)鍵,要求熟練掌握三角函數(shù)的計算公式,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}x'=\frac{1}{3}x\\ y'=\frac{1}{2}y\end{array}\right.$ | B. | $\left\{\begin{array}{l}x'=\frac{1}{3}x\\ y'=2y\end{array}\right.$ | C. | $\left\{\begin{array}{l}x'=3x\\ y'=\frac{1}{2}y\end{array}\right.$ | D. | $\left\{\begin{array}{l}x'=3x\\ y'=2y\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${\overline{x}}_{甲}$>${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$>$\overline{{S}_{乙}}$ | B. | ${\overline{x}}_{甲}$>${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$<$\overline{{S}_{乙}}$ | ||
C. | ${\overline{x}}_{甲}$<${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$>$\overline{{S}_{乙}}$ | D. | ${\overline{x}}_{甲}$<${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$<$\overline{{S}_{乙}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -$\frac{3}{2}$ | C. | -$\frac{3}{2}$或0 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,1) | B. | (2,-1) | C. | (-2,1) | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\frac{{e}^{2}+1}{e}$) | B. | ($\frac{{e}^{2}+1}{e}$,+∞) | C. | $(-\frac{{{e^2}+1}}{e},-2)$ | D. | $(2,\frac{{{e^2}+1}}{e})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com