【題目】已知在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),曲線的方程為.以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線l和曲線的極坐標(biāo)方程;
(2)曲線分別交直線l和曲線于點A,B,求的最大值及相應(yīng)的值.
【答案】(1)直線的極坐標(biāo)方程為:;曲線的極坐標(biāo)方程為:;(2) 當(dāng)時,,的最大值為.
【解析】
(1)參數(shù)方程化為普通方程,只要消去參數(shù)方程中的參數(shù)即可;極坐標(biāo)方程化為普通方程,只要利用極坐標(biāo)與直角坐標(biāo)的函數(shù)關(guān)系轉(zhuǎn)換即可;
(2)設(shè)出點的極坐標(biāo),結(jié)合極坐標(biāo)的幾何意義與三角函數(shù)求最值的知識,即可求解.
(1)由題意,直線的直角坐標(biāo)方程為:,
直線的極坐標(biāo)方程為:,
曲線的直角坐標(biāo)方程:,
曲線的極坐標(biāo)方程為:.
(2)由題意設(shè):,,
由(1)得,,
,
,,
當(dāng),即時,,
此時取最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點是曲線上的動點,求點到曲線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:(),圓:(),拋物線上的點到其準(zhǔn)線的距離的最小值為.
(1)求拋物線的方程及其準(zhǔn)線方程;
(2)如圖,點是拋物線在第一象限內(nèi)一點,過點P作圓的兩條切線分別交拋物線于點A,B(A,B異于點P),問是否存在圓使AB恰為其切線?若存在,求出r的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對入院人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | |||
女 | |||
合計 |
已知在全部人中隨機(jī)抽取人,抽到患心肺疾病的人的概率為.
(1)請將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為患心肺疾病與性別有關(guān)?請說明你的理由;
(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導(dǎo)市民盡可能地減少因霧霾天氣對身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進(jìn)行問卷調(diào)查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.
下面的臨界值表供參考:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,中國的國內(nèi)生產(chǎn)總值(GDP)已經(jīng)達(dá)到100億元人民幣,位居世界第二,這其中實體經(jīng)濟(jì)的貢獻(xiàn)功不可沒,實體經(jīng)濟(jì)組織一般按照市場化原則運行,某生產(chǎn)企業(yè)一種產(chǎn)品的成本由原料成本及非原料成本組成,每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計得到如下數(shù)據(jù):
根據(jù)以上數(shù)據(jù)繪制了如下的散點圖
現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量關(guān)系進(jìn)行擬合,為此變換如下:令,則,即與也滿足線性關(guān)系,令,則,即也滿足線線關(guān)系,這樣就可以使用最小二乘法求得非線性回歸方程,已求得用指數(shù)函數(shù)模型擬合的回歸方程為與的相關(guān)系數(shù),其他參考數(shù)據(jù)如下(其中)
(1)求指數(shù)函數(shù)模型和反比例函數(shù)模型中關(guān)于的回歸方程;
(2)試計算與的相關(guān)系數(shù),并用相關(guān)系數(shù)判斷:選擇反比例函數(shù)和指數(shù)函數(shù)兩個模型中哪一個擬合效果更好(精確到0.01)?
(3)根據(jù)(2)小題的選擇結(jié)果,該企業(yè)采用訂單生產(chǎn)模式(即根據(jù)訂單數(shù)量進(jìn)行生產(chǎn),產(chǎn)品全部售出),根據(jù)市場調(diào)研數(shù)據(jù),該產(chǎn)品定價為100元時得到簽到訂單的情況如下表:
訂單數(shù)(千件) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
概率 |
已知每件產(chǎn)品的原來成本為10元,試估算企業(yè)的利潤是多少?(精確到1千元)
參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別是:相關(guān)系數(shù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點為,右頂點為,離心率為.已知是拋物線的焦點, 到拋物線的準(zhǔn)線的距離為.
(I)求橢圓的方程和拋物線的方程;
(II)設(shè)上兩點, 關(guān)于軸對稱,直線與橢圓相交于點(異于點),直線與軸相交于點.若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,丙所得為( )
A.錢B.1錢C.錢D.錢
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率是,且以兩焦點間的線段為直徑的圓的內(nèi)接正方形面積是.
(1)求橢圓的方程;
(2)過左焦點的直線與相交于、兩點,直線,過作垂直于的直線與直線交于點,求的最小值和此時的直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com