【題目】某種零件的質(zhì)量指標值為整數(shù),指標值為8時稱為合格品,指標值為7或者9時稱為準合格品,指標值為610時稱為廢品,某單位擁有一臺制造該零件的機器,為了了解機器性能,隨機抽取了該機器制造的100個零件,不同的質(zhì)量指標值對應(yīng)的零件個數(shù)如下表所示;

質(zhì)量指標值

6

7

8

9

10

零件個數(shù)

6

18

60

12

4

使用該機器制造的一個零件成本為5元,合格品可以以每個元的價格出售給批發(fā)商,準合格品與廢品無法岀售.

1)估計該機器制造零件的質(zhì)量指標值的平均數(shù);

2)若該單位接到一張訂單,需要該零件2100個,為使此次交易獲利達到1400元,估計的最小值;

3)該單位引進了一臺加工設(shè)備,每個零件花費2元可以被加工一次,加工結(jié)果會等可能出現(xiàn)以下三種情況:①質(zhì)量指標值增加1,②質(zhì)量指標值不變,③質(zhì)量指標值減少1.已知每個零件最多可被加工一次,且該單位計劃將所有準合格品逐一加工,在(2)的條件下,估計的最小值(精確到0.01 .

【答案】17.9 29 38.67

【解析】

(1)用樣本的平均值估計總體的平均數(shù),即求出100個樣本的平均數(shù)即可.
(2) 一個零件成本為5元,的價格出售,可得式子:可解出答案.
(3) 設(shè)為滿足該訂單需制作個零件,則有,求出需要制作的零件總數(shù),然后再計算滿足利潤條件的值.

解:(1)設(shè)機器制造零件的質(zhì)量指標值的平均數(shù)為

由題意得:,

∴機器制造零件的質(zhì)量指標值的平均數(shù)為7.9.

2)一個零件成本為5元,的價格出售,可得式子:

解得:,

的最小值為9

3)依題意得,準合格品加工后有能合格,用于銷售,

設(shè)為滿足該訂單需制作個零件,則有

解得,

故要使獲利達到1400元,需要

,

解得,

的最小值為8.67.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy內(nèi),動點P到定點F(﹣10)的距離與P到定直線x=4的距離之比為.

1)求動點P的軌跡C的方程;

2)若軌跡C上的動點N到定點Mm0)(0m2)的距離的最小值為1,求m的值.

3)設(shè)點AB是軌跡C上兩個動點,直線OAOB與軌跡C的另一交點分別為A1、B1,且直線OA、OB的斜率之積等于,問四邊形ABA1B1的面積S是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓的普通方程為.在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為

1)寫出圓的參數(shù)方程和直線的直角坐標方程;

2)設(shè)點上,點Q在上,求的最小值及此時點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的首項,對任意的,都有,數(shù)列是公比不為的等比數(shù)列.

1)求實數(shù)的值;

2)設(shè)數(shù)列的前項和為,求所有正整數(shù)的值,使得恰好為數(shù)列中的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由我國引領(lǐng)的5G時代已經(jīng)到來,5G的發(fā)展將直接帶動包括運營、制造、服務(wù)在內(nèi)的通信行業(yè)整體的快速發(fā)展,進而對增長產(chǎn)生直接貢獻,并通過產(chǎn)業(yè)間的關(guān)聯(lián)效應(yīng)和波及效應(yīng),間接帶動國民經(jīng)濟各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟增加值.如圖是某單位結(jié)合近年數(shù)據(jù),對今后幾年的5G經(jīng)濟產(chǎn)出所做的預(yù)測.結(jié)合下圖,下列說法正確的是(

A.5G的發(fā)展帶動今后幾年的總經(jīng)濟產(chǎn)出逐年增加

B.設(shè)備制造商的經(jīng)濟產(chǎn)出前期增長較快,后期放緩

C.設(shè)備制造商在各年的總經(jīng)濟產(chǎn)出中一直處于領(lǐng)先地位

D.信息服務(wù)商與運營商的經(jīng)濟產(chǎn)出的差距有逐步拉大的趨勢

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角,,的對邊分別為,,,已知.

1)若,的面積為,求的值;

2)若,且角為鈍角,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知有窮數(shù)列共有,且.

1)若,,試寫出一個滿足條件的數(shù)列;

2)若,求證:數(shù)列為遞增數(shù)列的充要條件是;

3)若,則所有可能的取值共有多少個?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四邊形為矩形, ,的中點,沿折起,得到四棱錐,設(shè)的中點為,在翻折過程中,得到如下有三個命題:

平面,且的長度為定值;

三棱錐的最大體積為

③在翻折過程中,存在某個位置,使得.

其中正確命題的序號為__________.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

同步練習冊答案