右圖是根據部分城市某年6月份的平均氣溫(單位:℃)數(shù)據得到的樣本頻率分布直方圖,其中平均氣溫的范圍是[20.5,26.5],樣本數(shù)據的分組為[20.5,21.5),[21.5,22.5),[22.5,23.5)[23.5,24.5),[24.5,25.5),[25.5,26.5].已知樣本中平均氣溫低于22.5 ℃的城市個數(shù)為11,則樣本中平均氣溫不低于25.5 ℃的城市個數(shù)為________

 

9.

【解析】設樣本容量為n,則n×(0.10.12)×111,所以n50,故所求的城市數(shù)為50×0.18×19.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年廣東省廣州市畢業(yè)班綜合測試一文科數(shù)學試卷(解析版) 題型:解答題

已知等差數(shù)列的首項為,公差為,數(shù)列滿足,.

1)求數(shù)列的通項公式;

2)記,求數(shù)列的前項和.

(注:表示的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)仿真模擬卷1練習卷(解析版) 題型:解答題

如圖,已知橢圓的中心在坐標原點,焦點在x軸上,長軸長是短軸長的2倍,且經過點M(2,1),平行于OM的直線ly軸上的截距為m,直線l與橢圓相交于A,B兩個不同點.

(1)求實數(shù)m的取值范圍;

(2)證明:直線MA,MBx軸圍成的三角形是等腰三角形.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)仿真模擬卷1練習卷(解析版) 題型:選擇題

某幾何體的三視圖(圖中單位:cm)如圖所示,則此幾何體的體積是(  )

A36 cm3 B48 cm3

C60 cm3 D72 cm3

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷6練習卷(解析版) 題型:解答題

某車間共有12名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).

(1)根據莖葉圖計算樣本均值.

(2)日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.根據莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?

(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷6練習卷(解析版) 題型:選擇題

下列說法:

將一組數(shù)據中的每個數(shù)據都加上或減去同一個常數(shù)后,方差恒不變;

設有一個回歸方程35x,變量x增加一個單位時,y平均增加5個單位;

線性回歸方程x必過(,);

在一個2×2列聯(lián)表中,由計算得K213.079,則有99%的把握確認這兩個變量間有關系.

其中錯誤的個數(shù)是(  )

本題可以參考獨立性檢驗臨界值表:

P(K2k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

A0 B1 C2 D3

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷5練習卷(解析版) 題型:解答題

已知橢圓C1(ab0)的離心率為,其左、右焦點分別是F1、F2,過點F1的直線l交橢圓CE、G兩點,且EGF2的周長為4.

(1)求橢圓C的方程;

(2)若過點M(2,0)的直線與橢圓C相交于兩點A、B,設P為橢圓上一點,且滿足t (O為坐標原點),當||時,求實數(shù)t的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷5練習卷(解析版) 題型:選擇題

已知雙曲線1和橢圓1(a0,mb0)的離心率互為倒數(shù),那么以a,b,m為邊長的三角形是(  )

A.銳角三角形 B.直角三角形

C.鈍角三角形 D.銳角或鈍角三角形

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷3練習卷(解析版) 題型:選擇題

在等差數(shù)列{an}中,首項a1120,公差d=-4,若Snan(n≥2),則n的最小值為(  )

A60 B62 C70 D72

 

查看答案和解析>>

同步練習冊答案