【題目】一個(gè)正方體的平面展開(kāi)圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N。
(1)請(qǐng)將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說(shuō)明理由);
(2)證明:直線MN∥平面BDH;
(3)過(guò)點(diǎn)M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.
【答案】見(jiàn)解析
【解析】解:(1)點(diǎn)F,G,H的位置如圖所示.
(2)證明:連接BD,設(shè)O為BD的中點(diǎn),連接OM,OH,AC,BH,MN。
∵M(jìn),N分別是BC,GH的中點(diǎn),
∴OM∥CD,且OM=CD,NH∥CD,且NH=CD,
∴OM∥NH,OM=NH,
則四邊形MNHO是平行四邊形,∴MN∥OH,
又∵M(jìn)N平面BDH,OH平面BDH,
∴MN∥平面BDH。
(3)由(2)知OM∥NH,OM=NH,連接GM,MH,過(guò)點(diǎn)M,N,H的平面就是平面GMH,它將正方體分割為兩個(gè)同高的棱柱,高都是GH,底面分別是四邊形BMGF和三角形MGC,
體積比等于底面積之比,即3∶1。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】東亞運(yùn)動(dòng)會(huì)將于2013年10月6日在天津舉行.為了搞好接待工作,組委會(huì)打算學(xué)習(xí)北京奧運(yùn)會(huì)招募大量志愿者的經(jīng)驗(yàn),在某學(xué)院招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男女志愿者中分別有10人和6人喜愛(ài)運(yùn)動(dòng),其余人不喜歡運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜愛(ài)運(yùn)動(dòng) | 不喜愛(ài)運(yùn)動(dòng) | 總計(jì) | |
男 | 10 | 16 | |
女 | 6 | 14 | |
總計(jì) | 30 |
(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為性別與喜愛(ài)運(yùn)動(dòng)有關(guān)?
(3)如果從喜歡運(yùn)動(dòng)的女志愿者中(其中恰有4人會(huì)外語(yǔ)),抽取2名負(fù)責(zé)翻譯工作,那么抽出的志愿者中至少有1人能勝任翻譯工作的概率是多少?
參考公式:K2=,其中
n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k) | 0.40 | 0.25 | 0.10 | 0.010 |
k | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解人們對(duì)于國(guó)家新頒布的“生育二胎放開(kāi)”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表,并問(wèn)是否有99%的把握認(rèn)為以45歲為分界點(diǎn)對(duì)“生育二胎放開(kāi)”政策的支持度有差異;
(2)若對(duì)年齡在的被調(diào)查人中各隨機(jī)選取兩人進(jìn)行調(diào)查,恰好這兩人都支持“生育二胎放開(kāi)”的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,六面體ABCDHEFG中,四邊形ABCD為菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。
(1)求證:EG⊥DF;
(2)求BE與平面EFGH所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),給出下列結(jié)論:
(1)若對(duì)任意,且,都有,則為R上的減函數(shù);
(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);
(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);
(4)t為常數(shù),若對(duì)任意的,都有則關(guān)于對(duì)稱(chēng)。
其中所有正確的結(jié)論序號(hào)為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)的某種時(shí)令商品每件成本為元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來(lái)天內(nèi)的日銷(xiāo)售量(件)與時(shí)間(天)的關(guān)系如下表所示.
時(shí)間/天 | 1 | 3 | 6 | 10 | 36 | …… |
日銷(xiāo)售量 /件 | 94 | 90 | 84 | 76 | 24 | …… |
未來(lái)40天內(nèi),前20天每天的價(jià)格(元/件)與時(shí)間(天)的函數(shù)關(guān)系式為 ,且為整數(shù)),后20天每天的價(jià)格(元/件)與時(shí)間(天)的函數(shù)關(guān)系式為,且為整數(shù)).
(Ⅰ)認(rèn)真分析表格中的數(shù)據(jù),用所學(xué)過(guò)的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)(件)與 (天)的關(guān)系式;
(Ⅱ)試預(yù)測(cè)未來(lái) 40 天中哪一天的日銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是多少?
(Ⅲ)在實(shí)際銷(xiāo)售的前 20 天中,該公司決定每銷(xiāo)售 1 件商品就捐贈(zèng)元利潤(rùn)給希望工程. 公司通過(guò)銷(xiāo)售記錄發(fā)現(xiàn),前 20 天中,每天扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn)隨時(shí)間(天)的增大而增大,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.且曲線的左焦點(diǎn)在直線上.
(1)若直線與曲線交于兩點(diǎn),求的值;
(2)求曲線的內(nèi)接矩形的周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(2,2),圓C:x2+y2-8y=0,過(guò)點(diǎn)P的動(dòng)直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).
(1)求M的軌跡方程;
(2)當(dāng)|OP|=|OM|時(shí),求l的方程及△POM的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求的最小值;
(2)記的最小值為,已知函數(shù),若對(duì)于任意的,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com