【題目】某商家計劃投入10萬元經(jīng)銷甲,乙兩種商品,根據(jù)市場調(diào)查統(tǒng)計,當投資額為萬元,經(jīng)銷甲,乙兩種商品所獲得的收益分別為萬元與萬元,其中,,當該商家把10萬元全部投入經(jīng)銷乙商品時,所獲收益為5萬元.

(1)求實數(shù)a的值;

(2)若該商家把10萬元投入經(jīng)銷甲,乙兩種商品,請你幫他制訂一個資金投入方案,使他能獲得最大總收益,并求出最大總收益.

【答案】(1);(2)投入甲商品的資金為萬元,投入乙商品的資金為萬元,此時收益最大為萬元.

【解析】

(1)代入,即可求出的值;

(2)根據(jù)分段函數(shù)求出內(nèi)的收益函數(shù),分別利用基本不等式和二次函數(shù)求出兩段的最值,然后比較大小即可得出結(jié)果.

(1)依題意可得,解得

(2)設(shè)投入商品的資金為萬元,則投入商品的資金為萬元,

設(shè)收入為萬元,則

①當時,,,

,當且僅當,即時,取等號.

②當時,則,

因為,所以此時

因為,所以最大收益為萬元,

答:投入甲商品的資金為8萬元,投入乙商品的資金為2萬元,此時收益最大,為17萬元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線關(guān)于軸對稱,且經(jīng)過點.

1)求拋物線的標準方程及其準線方程;

2)設(shè)為原點,過拋物線的焦點作斜率不為0的直線交拋物線于兩點、,拋物線的準線分別交直線、于點和點,求證:以為直徑的圓經(jīng)過軸上的兩個定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某二手交易市場對某型號的二手汽車的使用年數(shù)x0x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如下的對應(yīng)數(shù)據(jù):

使用年數(shù)x

2

4

6

8

10

銷售價格y

16

13

9.5

7

4.5

1)試求y關(guān)于x的回歸直線方程

(參考公式:

2)已知每輛該型號汽車的收購價格為ω0.05x21.75x+17.2萬元,根據(jù)(1)中所求的回歸方程,預(yù)測x為何值時,銷售一輛該型號汽車所獲得的利潤z最大?(利潤=銷售價格﹣收購價格)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年以來精準扶貧政策的落實,使我國扶貧工作有了新進展,貧困發(fā)生率由年底的下降到年底的,創(chuàng)造了人類減貧史上的的中國奇跡.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例,年至年我國貧困發(fā)生率的數(shù)據(jù)如下表:

年份

2012

2013

2014

2015

2016

2017

2018

貧困發(fā)生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)從表中所給的個貧困發(fā)生率數(shù)據(jù)中任選兩個,求兩個都低于的概率;

(2)設(shè)年份代碼,利用線性回歸方程,分析span>年至年貧困發(fā)生率與年份代碼的相關(guān)情況,并預(yù)測年貧困發(fā)生率.

附:回歸直線的斜率和截距的最小二乘估計公式分別為:

(的值保留到小數(shù)點后三位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)設(shè)點,直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點與拋物線的焦點重合,且橢圓的離心率為

1)求的方程;

2)過點的動直線與橢圓相交于兩點,為原點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為緩減人口老年化帶來的問題,中國政府在2016年1月1日作出全國統(tǒng)一實施全面的“二孩”政策,生“二孩”是目前中國比較流行的元素某調(diào)查機構(gòu)對某校學(xué)生做了一個是否同意父母生“二孩”抽樣調(diào)查,該調(diào)查機構(gòu)從該校隨機抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”現(xiàn)已得知100人中同意父母生“二孩”占,統(tǒng)計情況如表:

性別屬性

同意父母生“二孩”

反對父母生“二孩”

合計

男生

10

女生

30

合計

100

請補充完整上述列聯(lián)表;

根據(jù)以上資料你是否有把握,認為是否同意父母生“二孩”與性別有關(guān)?請說明理由.

參考公式與數(shù)據(jù):,其中

k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)正四面體ABCD的所有棱長都為1米,有一只螞蟻從點A開始按以下規(guī)則前進:在每一個頂點處等可能地選擇通過這個頂點的三條棱之一,并且沿著這條棱爬到盡頭,則它爬了4米之后恰好位于頂點A的概率為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案