【題目】已知tanα=2.
(1)求 的值;
(2)若α∈(0, ),求sin(α﹣ )的值.
【答案】
(1)解:由tanα=2 知,cosα≠0,∴ = =
(2)解:由tanα=2= ,得sinα=2cosα,再根據(jù)sin2α+cos2α=1,α∈(0, ),
求得cosα= ,sinα= ,
∴sin(α﹣ )=sinαcos ﹣cosαsin = ﹣ =
【解析】(1)利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.(2)利用同角三角函數(shù)的基本關(guān)系求得cosα 和sinα的值,再利用兩角差的正弦公式求得sin(α﹣ )的值.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用同角三角函數(shù)基本關(guān)系的運(yùn)用和兩角和與差的余弦公式,掌握同角三角函數(shù)的基本關(guān)系:;;(3) 倒數(shù)關(guān)系:;兩角和與差的余弦公式:即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,PA= ,AB=1.AD=2.∠BAD=120°,E,F(xiàn),G,H分別是BC,PB,PC,AD的中點(diǎn).
(Ⅰ)求證:PH∥平面GED;
(Ⅱ)過(guò)點(diǎn)F作平面α,使ED∥平面α,當(dāng)平面α⊥平面EDG時(shí),設(shè)PA與平面α交于點(diǎn)Q,求PQ的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】集合A={x|1≤x≤5},B={x|2≤x≤6},
(1)若x∈A,y∈B且均為整數(shù),求x>y的概率.
(2)若x∈A,y∈B且均為實(shí)數(shù),求x>y的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計(jì)A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50 kg | 箱產(chǎn)量≥50 kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+(1﹣k)x﹣k恰有一個(gè)零點(diǎn)在區(qū)間(2,3)內(nèi),則實(shí)數(shù)k的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= x3﹣2ax2﹣3x(a∈R). (Ⅰ)若f(x)在區(qū)間(﹣1,1)內(nèi)為減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)對(duì)于實(shí)數(shù)a的不同取值,試討論y=f(x)在(﹣1,1)內(nèi)的極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題p: =1表示雙曲線方程,命題q:函數(shù)f(m)= 有意義.若p∨q為真,p∧q為假,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).
(I)求的解析式及單調(diào)遞減區(qū)間;
(II)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意恒成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)詢問某大學(xué)40名不同性別的大學(xué)生在購(gòu)買食物時(shí)是否讀營(yíng)養(yǎng)說(shuō)明,得到如下列聯(lián)表:
男 | 女 | 總計(jì) | |
讀營(yíng)養(yǎng)說(shuō)明 | 16 | 8 | 24 |
不讀營(yíng)養(yǎng)說(shuō)明 | 4 | 12 | 16 |
總計(jì) | 20 | 20 | 40 |
(1)根據(jù)以上列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為性別與是否讀營(yíng)養(yǎng)說(shuō)明之間有關(guān)系?
(2)從被詢問的16名不讀營(yíng)養(yǎng)說(shuō)明的大學(xué)生中,隨機(jī)抽取2名學(xué)生,求抽到男生人數(shù)的分布列及其均值(即數(shù)學(xué)期望).
(注: ,其中為樣本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com