(不等式選講)(本題滿(mǎn)分10分)

已知x,y,z均為正數(shù).求證:

   

 

【答案】

 

證明 因?yàn)閤,y,z無(wú)為正數(shù).所以, ……………………4分

同理可得,     ………………………………………7分

當(dāng)且僅當(dāng)x=y(tǒng)=z時(shí),以上三式等號(hào)都成立.

將上述三個(gè)不等式兩邊分別相加,并除以2,得.………10分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題共有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分.如果多做,則以所做的前2題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
變換T1是逆時(shí)針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對(duì)應(yīng)的變換矩陣為M1,變換T2對(duì)應(yīng)的變換矩陣是M2=
11
01

(I)求點(diǎn)P(2,1)在T1作用下的點(diǎn)Q的坐標(biāo);
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線(xiàn)方程.
(2)選修4-4:極坐標(biāo)系與參數(shù)方程
從極點(diǎn)O作一直線(xiàn)與直線(xiàn)l:ρcosθ=4相交于M,在OM上取一點(diǎn)P,使得OM•OP=12.
(Ⅰ)求動(dòng)點(diǎn)P的極坐標(biāo)方程;
(Ⅱ)設(shè)R為l上的任意一點(diǎn),試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)本題有(1),(2),(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分.如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑.
(1)選修4-2:矩陣與變換
如圖所示:△OAB在伸縮變換M作用下變?yōu)椤鱋A1B1
(i)求矩陣M的特征值及相應(yīng)的特征向量;
(ii)求逆矩陣M-1以及(M-120
(2)選修4-4:坐標(biāo)系與參數(shù)方程.
已知曲線(xiàn)C1的參數(shù)方程為
x=2sinθ
y=cosθ
(θ為參數(shù)),曲線(xiàn)C2的參數(shù)方程為
x=2t
y=t+1
(t為參數(shù))
(i)若將曲線(xiàn)C1與C2上各點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的一半,分別得到曲線(xiàn)C1和C2,求出曲線(xiàn)C1和C2的普通方程;
(ii)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過(guò)極點(diǎn)且與C2垂直的直線(xiàn)的極坐標(biāo)方程.
(3)選修4-5:不等式選講
已知a,b,c為實(shí)數(shù),且a+b+c+2-2m=0,a2+
b 2
4
+
c 2
9
+m-1=0
(i)求證:a2+
b 2
4
+
c 2
9
(a+b+c) 2
14

(ii)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

  4. (選修4-4不等式選講)(本題滿(mǎn)分10分)

已知x,y,z均為正數(shù).求證: 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年大連市高二下學(xué)期六月月考理科數(shù)學(xué)卷 題型:解答題

(不等式選講)(本題滿(mǎn)分10分)

 已知函數(shù)

(1)   若函數(shù)得值不大于1,求得取值范圍;

(2)   若不等式的解集為R,求的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案