(10分)知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí),+1.
(1)計(jì)算; 。2)當(dāng)時(shí),求的解析式.

;(2)。

解析試題分析:(1)根據(jù)已知條件,得到f(-x)=-f(x),進(jìn)而得到f(0),同時(shí)利用對(duì)稱性得到f(-1)的值。
(2),結(jié)合性質(zhì)得到結(jié)論。

(2) ,又函數(shù)f(x)是奇函數(shù)
 所以
考點(diǎn):本題主要是考查函數(shù)奇偶性和函數(shù)的解析式的運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用奇函數(shù)的對(duì)稱性得到x<0的解析式,進(jìn)而分析得到特殊的函數(shù)值。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是定義在R上的奇函數(shù),且對(duì)任意,當(dāng)時(shí),都有.
(1)求證:R上為增函數(shù).
(2)若對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題9分)已知函數(shù)。
(Ⅰ)若上的最小值是,試解不等式;
(Ⅱ)若上單調(diào)遞增,試求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分) 已知函數(shù)f(x)=-1+2sinxcosx+2cos2x.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)求f(x)圖象上與原點(diǎn)最近的對(duì)稱中心的坐標(biāo);
(3)若角α,β的終邊不共線,且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
定義在上的偶函數(shù),已知當(dāng)時(shí)的解析式
(Ⅰ)寫出上的解析式;
(Ⅱ)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)

(1)求時(shí)函數(shù)的解析式
(2)用定義證明函數(shù)在上是單調(diào)遞增
(3)寫出函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)(1)已知函數(shù),問方程在區(qū)間[-1,0]內(nèi)是否有
解,為什么?
(2)若方程在(0,1)內(nèi)恰有一解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分)設(shè),.
(1)若恒成立,求實(shí)數(shù)的取值范圍;
(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)P:二次函數(shù)在區(qū)間上存在零點(diǎn);Q:函數(shù)內(nèi)沒有極值點(diǎn).若“P或Q”為真命題,“P且Q”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案