設函數(shù)
(1)若的最小值為3,求的值;
(2)求不等式的解集.
(1);(2)

試題分析:本題考查絕對值不等式的解法和不等式恒成立問題,考查學生的分類討論思想和轉化能力以及計算能力.第一問,利用不等式的性質,得出的最小值,列出等式,解出的值;第二問,解含參絕對值不等式,用零點分段法去掉絕對值,由于已知中有和4的大小,所以直接解不等式即可,最后綜合上述所得不等式的解集.
試題解析:⑴因為
因為,所以當且僅當時等號成立,故
為所求.     4分
⑵不等式即不等式,
①當時,原不等式可化為

所以,當時,原不等式成立.
②當時,原不等式可化為
所以,當時,原不等式成立.
③當時,原不等式可化為
 由于
所以,當時,原不等式成立.
綜合①②③可知: 不等式的解集為      10分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設關于不等式的解集為,且.
(1),恒成立,且,求的值;
(2)若,求的最小值并指出取得最小值時的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù) ).區(qū)間 ,定義區(qū)間 的長度為 b-a .
(1)求區(qū)間I的長度(用 a 表示);
(2)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

解關于x的不等式其中.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

用一段長為30m的籬笆圍成一個一邊靠墻的矩形菜園,墻長18m,要求菜園的面積不小于216m2,靠墻的一邊長為xm,其中的不等關系可用不等式(組)表示為     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則下列說法正確的是 (   )
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

定義區(qū)間、的長度均為.已知實數(shù).則滿足的x構成的區(qū)間的長度之和為         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,給出下列命題:
①若,則;②若ab≠0,則;③若,則
④若,則a,b中至少有一個大于1.其中真命題的個數(shù)為(  )
A.2B.3 C.4D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

不等式的解集是      

查看答案和解析>>

同步練習冊答案