如圖直三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)為2,底面△ABC是等腰直角三角形,∠ABC=90°,AC=2,D是AA1的中點(diǎn)
(1)求三棱柱ABC-A1B1C1的體積V;
(2)求C1D與上底面所成角的大小.(用反三角表示)

【答案】分析:(1)利用三棱柱ABC-A1B1C1的體積公式,關(guān)鍵是求底面積,而底面△ABC是等腰直角三角形,∠ABC=90°,AC=2,故易求;
(2)由于是直三棱柱,故C1D與上底面所成角即為∠DC1A1,從而利用正切函數(shù)可求.
解答:(1)解:由已知條件,,∠ABC=90°,AC=2,易得AB=BC=
所以V=------------------------------------------------------------------------(5分)
(2)解:C1D與上底面所成角即為∠DC1A1,----------------------------------------------(7分)
由DA1=1,A1C1=2得,
所以C1D與上底面所成角的大小為-----------------------------------------------(12分)
點(diǎn)評(píng):本題的考點(diǎn)是直線與平面所成的角,主要考查線面角,關(guān)鍵是利用幾何體尋找線面角,考查幾何體體積公式的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖直三棱柱ABC-A1B1C1的體積為V,點(diǎn)P、Q分別在側(cè)棱AA1和CC1上,AP=C1Q,則四棱錐B-APQC的體積為( 。
A、
V
2
B、
V
3
C、
V
4
D、
V
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、如圖直三棱柱ABC-DEF中,∠CAB是直角,AB=AC=CF,則異面直線DB與AF所成角的度數(shù)為
60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•徐匯區(qū)二模)如圖直三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)為2,底面△ABC是等腰直角三角形,∠ABC=90°,AC=2,D是AA1的中點(diǎn)
(1)求三棱柱ABC-A1B1C1的體積V;
(2)求C1D與上底面所成角的大。ㄓ梅慈潜硎荆

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•咸陽(yáng)三模)如圖直三棱柱ABC-A1B1C1中,AC=CC1=2,AB=BC,D是BA1上一點(diǎn),且AD⊥平面A1BC.
(1)求證:BC⊥平面ABB1A1;
(2)求三棱錐A-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•咸陽(yáng)三模)如圖直三棱柱ABC-A1B1C1中,AC=CC1=2,AB=BC,D是BA1上一點(diǎn),且AD⊥平面A1BC.
(1)求證:BC⊥平面ABB1A1;
(2)在棱BB1是否存在一點(diǎn)E,使平面AEC與平面ABB1A1的夾角等于60°,若存在,試確定E點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案