7.在△ABC中,三邊a,b,c成等差數(shù)列,且b=2,B=$\frac{π}{3}$,則S△ABC的最大值為$\sqrt{3}$.

分析 由等差數(shù)列的性質(zhì),三角形內(nèi)角和定理可求B,利用余弦定理,基本不等式可求ac≤4,利用三角形面積公式即可計算得解.

解答 解:∵三邊a,b,c成等差數(shù)列,且b=2,B=$\frac{π}{3}$,
∴由余弦定理可得:4=a2+c2-ac≥2ac-ac=ac,當(dāng)且僅當(dāng)a=c時等號成立,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$ac≤$\sqrt{3}$,當(dāng)且僅當(dāng)a=c時等號成立.
∴△ABC面積的最大值為$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 本題考查正弦定理,余弦定理,三角形面積公式,三角形內(nèi)角和定理,基本不等式在解三角形中的運用,考查等比數(shù)列,等差數(shù)列的性質(zhì),考查運算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知點A(2,3),B(6,1),O為坐標(biāo)原點,P為x軸上一動點.
(Ⅰ)若$\overrightarrow{AP}$⊥$\overrightarrow{BP}$,求點P的坐標(biāo);
(Ⅱ)$當(dāng)\overrightarrow{AP}•\overrightarrow{BP}取最小值時,求向量\overrightarrow{AP}與\overrightarrow{BP}的夾角的余弦值$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)實數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}}\right.$,則目標(biāo)函數(shù)z=y-$\frac{1}{2}x$的最小值為( 。
A.-1B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=alnx+$\frac{2{a}^{2}}{x}$+x,a≠0
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a∈(-∞,0)時,記函數(shù)f(x)的最小值為g(a),求證:g(a)≤$\frac{1}{2}$e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線$l:\sqrt{3}x+y+2017=0$,則直線l的傾斜角為( 。
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.三角形ABC中,BC=4,且sinAcotB+cosA=$\sqrt{3}$,則三角形ABC面積最大值為4$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦點,P為雙曲線右支上一點,PF1與以原點為圓心a為半徑的圓相切,切點為M,若$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{O{F}_{1}}+\overrightarrow{OP}$),那么該雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{10}}{2}$D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=ln(mex+ne-x)+m為偶函數(shù),且f(0)=2+ln4,則m=2,不等式f(x)≤f(m+n)的解集為{x|-4≤x≤4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=2x2+x-1,x∈[-5,5],在定義域內(nèi)任取一點x0,使f(x0)≤0的概率是( 。
A.$\frac{3}{20}$B.$\frac{2}{3}$C.$\frac{3}{10}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案