13.已知變量x,y滿足$\left\{\begin{array}{l}{2x-y≤0}\\{2-2y+3≥0}\\{x≥0}\end{array}\right.$,則z=log4(2x+y+4)的最大值為( 。
A.$\frac{3}{2}$B.1C.$\frac{2}{3}$D.2

分析 先根據(jù)約束條件畫出可行域,欲求z=log4(2x+y+4)的最大值,即要求z1=2x+y+4的最大值,再利用幾何意義求最值,分析可得z1=2x+y+4表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最大值即可.

解答 解:作$\left\{\begin{array}{l}{2x-y≤0}\\{2-2y+3≥0}\\{x≥0}\end{array}\right.$,的可行域如圖:
易知可行域為一個三角形,
驗證知在點A(1,2)時,
z1=2x+y+4取得最大值8,
∴z=log4(2x+y+4)最大是$\frac{3}{2}$,
故選:A.

點評 本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.若0<a<1,b<-1,則函數(shù)f(x)=ax+b的圖象不經過( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若函數(shù)f(x)=-x3+6x2+m的極小值為23,則實數(shù)m等于23.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,底面四邊形ABCD是以O為中心的正方形,PO⊥底面ABCD,AB=2,M為BC的中點且PM⊥AP.
(1)證明:PM⊥平面PAD;
(2)求四棱錐P-ABMO的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知a=log32,b=log2$\frac{1}{3}$,c=20.5,則a,b,c的大小關系為( 。
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$,且z=$\frac{y}{x-a}$僅在點A(-1,$\frac{1}{2}$)處取得最大值,則實數(shù)a的取值范圍為( 。
A.[-2,-1)B.(-∞,-1)C.(-2,-1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知F是拋物線y2=16x的焦點,A,B是該拋物線上的兩點,|AF|+|BF|=12,則線段AB中點到y(tǒng)軸的距離為( 。
A.8B.6C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若兩條直線ax+2y-1=0與3x-6y-1=0垂直,則a的值為( 。
A.4B.-4C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設數(shù)列{an}前n項和Sn,且Sn=2an-2.,令bn=log2an
(I)試求數(shù)列{an}的通項公式;
(II)設${c_n}=\frac{b_n}{a_n}$,求數(shù)列{cn}的前n項和Tn
(Ⅲ)對任意m∈N*,將數(shù)列{2bn}中落入?yún)^(qū)間(am,a2m)內的項的個數(shù)記為dm,求數(shù)列{dm}的前m項和Tm

查看答案和解析>>

同步練習冊答案