A. | $\frac{3}{2}$ | B. | 1 | C. | $\frac{2}{3}$ | D. | 2 |
分析 先根據(jù)約束條件畫出可行域,欲求z=log4(2x+y+4)的最大值,即要求z1=2x+y+4的最大值,再利用幾何意義求最值,分析可得z1=2x+y+4表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最大值即可.
解答 解:作$\left\{\begin{array}{l}{2x-y≤0}\\{2-2y+3≥0}\\{x≥0}\end{array}\right.$,的可行域如圖:
易知可行域為一個三角形,
驗證知在點A(1,2)時,
z1=2x+y+4取得最大值8,
∴z=log4(2x+y+4)最大是$\frac{3}{2}$,
故選:A.
點評 本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-2,-1) | B. | (-∞,-1) | C. | (-2,-1) | D. | (-1,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 6 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com