A. | (-∞,2)∪(2,+∞) | B. | (-∞,-2)∪(0,+∞) | C. | (-∞,0)∪(2,+∞) | D. | (-∞,-1)∪(1,+∞) |
分析 先求出x>0時的解析式,由偶函數(shù)性質(zhì)得:f(-x)=f(x),則f(x+1)>3可變?yōu)閒(|x+1|)>3,代入已知表達(dá)式可表示出不等式,先解出|x+1|的范圍,再求x范圍即可.
解答 解:設(shè)x>0,則-x<0,
因為當(dāng)x≤0時,f(x)=x2-2x,
所以f(-x)=x2+2x,
因為f(x)為偶函數(shù),所以f(x)=f(-x)=x2+2x,
因為f(x)為偶函數(shù),所以f(|x+1|)=f(x+1),
則f(x+1)>3可化為f(|x+1|)>3,即|x+1|2+2|x+1|>3,(|x+1|+3)(|x+1|-1)>0,
所以|x+1|>1,解得:x>0或x<-2,
所以不等式f(x+1)>3的解集是{x|x>0或x<-2},
故選:B.
點評 本題考查函數(shù)的奇偶性、一元二次不等式的解法,借助偶函數(shù)性質(zhì)把不等式具體化是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A?B | B. | A?B | C. | A=B | D. | A與B無公共元素 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M⊆N | B. | N⊆M | C. | M∩N={2,3} | D. | M∪N={1,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2≤x<3} | B. | {x|x≤-2} | C. | {x|x<3} | D. | {x|x<-2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com