(12分)在四棱錐中,平面PAD⊥平面ABCD, AB=AD,∠BAD=60°,E、F分別是AP、AD的中點
求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
如圖:在四棱錐中,底面ABCD是菱形,,平面ABCD,點M,N分別為BC,PA的中點,且
(I)證明:平面AMN;
(II)求三棱錐N的體積;
(III)在線段PD上是否存在一點E,使得平面ACE;若存在,求出PE的長,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆河北衡水中學(xué)高二上第四次調(diào)研考試?yán)頂?shù)學(xué)卷(解析版) 題型:解答題
如圖,在四棱錐中,平面ABCD,底面ABCD是菱形,,.
(1)求證:平面PAC;
(2)若,求與所成角的余弦值;
(3)當(dāng)平面PBC與平面PDC垂直時,求PA的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆四川省高二10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
在四棱錐中,平面ABCD,底面ABCD是菱形,,.
(1)求證:平面PAC;
(2)若,求PB與AC所成角的余弦值;
(3)若PA=,求證:平面PBC⊥平面PDC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三模擬考試?yán)砜茢?shù)學(xué) 題型:解答題
(12分)在四棱錐中,底面ABCD是矩形,PA=AD=4,AB=2,PB=,PD=。E是PD的中點。
(1)求證:AE⊥平面PCD;
(2)求二面角的平面角的大小的余弦值;
(3)在線段BC上是否存在點F,使得三棱錐F—ACE的體積恰為,
若存在,試確定點F的位置;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年江西省高二下學(xué)期第一次月考數(shù)學(xué)理卷 題型:解答題
((13分)
如圖,在四棱錐中,底面是正方形,側(cè)棱=2,,垂足為F。
(1)求證:PA∥平面BDE。
(2)求證:PB⊥平面DEF。
(3)求二面角B—DE—F的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com