已知,函數(shù).
(1)設(shè),將函數(shù)表示為關(guān)于的函數(shù),求的解析式和定義域;
(2)對任意,不等式都成立,求實數(shù)的取值范圍.

(1),定義域為;(2)實數(shù)的取值范圍是.

解析試題分析:(1)由恒等變換公式可求得,并可以表示出定義域;
(2)由求出的取值范圍,化簡成形式,用函數(shù)單調(diào)性即可求出實數(shù)的取值范圍.
試題解析: (1)
2分
可得4分

6分
定義域為      8分
(2) ∵
10分
恒成立
恒成立化簡得
又∵
    12分


上為減函數(shù)14分

  16分
考點:恒等變換公式、恒成立問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知是半徑為,圓心角為的扇形,是扇形弧上的動點,是扇形的內(nèi)接矩形.記,求當(dāng)角取何值時,矩形的面積最大?并求出這個最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),的最大值為2.
(1)求函數(shù)上的值域;
(2)已知外接圓半徑,,角所對的邊分別是,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的最小正周期和單調(diào)遞增區(qū)間;
(2)已知三邊長,且,的面積.求角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù))的最小正周期為
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)的圖象;若上至少含有10個零點,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,函數(shù).
(1)求函數(shù)的最小正周期;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)對于函數(shù),有下列結(jié)論:①是奇函數(shù);②是周期函數(shù),最小正周期為;③的圖象關(guān)于點對稱;④的圖象關(guān)于直線對稱.其中正確結(jié)論的序號是__________;(直接寫出所有正確結(jié)論的序號)
(2)對于函數(shù),求滿足的取值范圍;
(3)設(shè)函數(shù)的值域為,函數(shù)的值域為,試判斷集合之間的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知α=,回答下列問題.
(1)寫出所有與α終邊相同的角;
(2)寫出在(-4π,2π)內(nèi)與α終邊相同的角;
(3)若角β與α終邊相同,則是第幾象限的角?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=Asin,x∈R,A>0,0<φ<,y=f(x)的部分圖象如圖所示,P、Q分別為該圖象的最高點和最低點,點P的坐標(biāo)為(1,A).

(1)求f(x)的最小正周期及φ的值;
(2)若點R的坐標(biāo)為(1,0),∠PRQ=,求A的值.

查看答案和解析>>

同步練習(xí)冊答案