【題目】已知圓M的圓心在直線上,與直線相切,截直線所得的弦長為6.

1)求圓M的方程;

2)過點的兩條成角的直線分別交圓MA,CB,D,求四邊形面積的最大值.

【答案】12

【解析】

1)設圓的標準方程,將圓心代入直線的方程,由點到直線距離公式求得圓M的距離,由弦長公式及點到直線距離公式表示出直線與圓的關系,解方程組即可求得的值,即可求得圓M的標準方程

2)解法1:作,,令,討論兩種情況:當時,由余弦定理表示出,而、、、四點共圓,根據(jù)正弦定理求得,進而求得,結合基本不等式即可求得,即可求得四邊形面積的最大值;當時,由基本不等式求得,即可由二次函數(shù)性質求得四邊形面積的最大值.

解法2:結合三角形面積公式可得,由基本不等式可知,討論兩種情況,即可確定四邊形面積的最大值.

1)設圓M的方程為:

,解得:,

∴所求圓方程為

2)解法1

如圖作,,令,,

時,

、、四點共圓,

由正弦定理,

,

,

,

,當且僅當時取等,

時,

,

,

所以,

綜上所述,四邊形面積的最大值為.

解法2

(當且僅當時取等號),

要使得,則直線PM應是的平分線,

時,圓心M到直線AC、BD的距離為,則,

.

時,圓心M到直線AC、BD的距離為,則,

.

綜上所述,四邊形面積的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校高三課外興趣小組為了解高三同學高考結束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調查,情況如下表:

打算觀看

不打算觀看

女生

20

b

男生

c

25

1)求出表中數(shù)據(jù)b,c;

2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關;

3)為了計算10人中選出9人參加比賽的情況有多少種,我們可以發(fā)現(xiàn)它與10人中選出1人不參加比賽的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是偶函數(shù),且滿足,當時, ,當時, 的最大值為.

(1)求實數(shù)的值;

(2)函數(shù),若對任意的,總存在,使不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為, ,且離心率為, 為橢圓上任意一點,當時, 的面積為1.

(1)求橢圓的方程;

(2)已知點是橢圓上異于橢圓頂點的一點,延長直線, 分別與橢圓交于點, ,設直線的斜率為,直線的斜率為,求證: 為定值.

【答案】(1);(2)

【解析】試題分析:(1)設由題,由此求出,可得橢圓的方程;

(2)設,

當直線的斜率不存在時,可得;

當直線的斜率不存在時,同理可得.

當直線、的斜率存在時,,

設直線的方程為,則由消去通過運算可得

,同理可得,由此得到直線的斜率為,

直線的斜率為,進而可得.

試題解析:(1)設由題

解得,則

橢圓的方程為.

(2)設, ,

當直線的斜率不存在時,設,則,

直線的方程為代入,可得

, ,則,

直線的斜率為,直線的斜率為

,

當直線的斜率不存在時,同理可得.

當直線的斜率存在時,

設直線的方程為,則由消去可得:

,

,則,代入上述方程可得

,

,則

,

設直線的方程為,同理可得,

直線的斜率為

直線的斜率為,

.

所以,直線的斜率之積為定值,即.

型】解答
束】
21

【題目】已知函數(shù), ,在處的切線方程為.

(1)求,

(2)若,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為 為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;

(1)求曲線的極坐標方程;

(2)在曲線上取兩點, 與原點構成,且滿足,求面積的最大值.

【答案】(1);(2)

【解析】試題分析:(1)利用極坐標與直角坐標的互化公式可得直線的直角坐標方程為,

,消去參數(shù)可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標與直角坐標的互化公式可得

可得曲線C的極坐標方程.

(2)由(1)不妨設M(),,(),

,

,

由此可求面積的最大值.

試題解析:(1)由題意可知直線的直角坐標方程為,

曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為,

所以曲線C的極坐標方程為,

.

(2)由(1)不妨設M(),,(),

,

,

時, ,

所以△MON面積的最大值為.

型】解答
束】
23

【題目】已知函數(shù)的定義域為

(1)求實數(shù)的取值范圍;

(2)設實數(shù)的最大值,若實數(shù) , 滿足,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某校高三年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表如下,頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務的次數(shù)在區(qū)間[10,15)內的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數(shù)在區(qū)間[25,30)內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意恒成立,其中是整數(shù),則的取值的集合為____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某射擊運動員進行射擊訓練,前三次射擊在靶上的著彈點剛好是邊長為的等邊三角形的三個頂點.

(Ⅰ)第四次射擊時,該運動員瞄準區(qū)域射擊(不會打到外),則此次射擊的著彈點距的距離都超過的概率為多少?(彈孔大小忽略不計)

(Ⅱ) 該運動員前三次射擊的成績(環(huán)數(shù))都在區(qū)間內,調整一下后,又連打三槍,其成績(環(huán)數(shù))都在區(qū)間內.現(xiàn)從這次射擊成績中隨機抽取兩次射擊的成績(記為)進行技術分析.求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了配合新冠疫情防控,某市組織了以停課不停學,成長不停歇為主題的空中課堂,為了了解一周內學生的線上學習情況,從該市中抽取1000名學生進行調査,根據(jù)所得信息制作了如圖所示的頻率分布直方圖.

1)為了估計從該市任意抽取的3名同學中恰有2人線上學習時間在[200,300)的概率,特設計如下隨機模擬的方法:先由計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù),依次用0,1,2,3,…9的前若干個數(shù)字表示線上學習時間在[200,300)的同學,剩余的數(shù)字表示線上學習時間不在[200,300)的同學;再以每三個隨機數(shù)為一組,代表線上學習的情況.

假設用上述隨機模擬方法已產(chǎn)生了表中的30組隨機數(shù),請根據(jù)這批隨機數(shù)估計概率的值;

907 966 191 925 271 569 812 458 932 683 431 257 027 556

438 873 730 113 669 206 232 433 474 537 679 138 602 231

2)為了進一步進行調查,用分層抽樣的方法從這1000名學生中抽出20名同學,在抽取的20人中,再從線上學習時間[350,450)(350分鐘至450分鐘之間)的同學中任意選擇兩名,求這兩名同學來自同一組的概率.

查看答案和解析>>

同步練習冊答案