【題目】設(shè)集合S,T滿足≠ST,若S滿足下面的條件:(i)對(duì)于a,b∈S,都有a-b∈S且ab∈S;(ⅱ)對(duì)于r∈S,n∈T,都有nr∈S,則稱S是T的一個(gè)理想,記作ST.現(xiàn)給出下列集合對(duì):①S={0},T=R;②S={偶數(shù)},T=Z;③S=R,T=C(C為復(fù)數(shù)集),其中滿足ST的集合對(duì)的序號(hào)是

【答案】①②
【解析】①(ⅰ)0-0=0,0×0=0;(ⅱ)0×n=0,符合題意.
②(ⅰ)偶數(shù)-偶數(shù)=偶數(shù),偶數(shù)×偶數(shù)=偶數(shù);(ⅱ)偶數(shù)×整數(shù)=偶數(shù),符合題意.
③(ⅰ)實(shí)數(shù)-實(shí)數(shù)=實(shí)數(shù),實(shí)數(shù)×實(shí)數(shù)=實(shí)數(shù);(ⅱ)實(shí)數(shù)×復(fù)數(shù)=實(shí)數(shù)不一定成立,如2×i=2i,不合題意.
根據(jù)題意結(jié)合集合與元素的關(guān)系逐一判斷即可得出結(jié)論。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U={l,3,5,7,9},集合M={1,a﹣5},MU且UM={3,5,7},則實(shí)數(shù)a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在其定義域上既是奇函數(shù)又是增函數(shù)的是( 。
A.y=2x
B.y=sinx
C.y=x3
D.y=ln|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=2x+log2(x+1)在區(qū)間[0,1]上的最大值和最小值之和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為打入國(guó)際市場(chǎng),決定從A,B兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn),已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如表:(單位:萬美元)

年固定成本

每件產(chǎn)品成本

每件產(chǎn)品銷售價(jià)

每年最多可生產(chǎn)的件數(shù)

A產(chǎn)品

20

m

10

200

B產(chǎn)品

40

8

18

120

其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),m是待定常數(shù),其值由生產(chǎn)A產(chǎn)品的原材料決定,預(yù)計(jì)m∈[6,8],另外,年銷售x件B產(chǎn)品時(shí)需上交0.05x2萬美元的特別關(guān)稅,假設(shè)生產(chǎn)出來的產(chǎn)品都能在當(dāng)年銷售出去.
(1)求該廠分別投資生產(chǎn)A、B兩種產(chǎn)品的年利潤(rùn)y1 , y2與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)x之間的函數(shù)關(guān)系,并求出其定義域;
(2)如何投資才可獲得最大年利潤(rùn)?請(qǐng)?jiān)O(shè)計(jì)相關(guān)方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=log0.5(5+4x﹣x2)的單調(diào)遞增區(qū)間是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x)的定義域是R,且當(dāng)x∈[1,5]時(shí),f(x)=x3+1,則f(﹣2)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(m2-m-5)xm是冪函數(shù),且在x∈(0,+∞)上為增函數(shù),則實(shí)數(shù)m的值是( )
A.-2
B.4
C.3
D.-2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線y=ex在點(diǎn)A處的切線與直線x-y+3=0平行,則點(diǎn)A的坐標(biāo)為( )
A.(-1,e-1)
B.(0,1)
C.(1,e)
D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案