等差數(shù)列{an}的前n項和為Sn,若a1≠0,S4=a4,則
S8
S5
=( 。
分析:設出數(shù)列的首項和公差,根據(jù)等差數(shù)列通項公式和前n項和公式,代入條件化簡得a1和d的關系,再代入所求的式子化簡求值.
解答:解:設等差數(shù)列{an}的首項為a1≠0,公差為d,
 由S4=a4,得4a1+6d=a1+3d,得a1=-d≠0,
S8
S5
=
8a1+
8×7
2
×d
5a1+
5×4
2
×d
=
8a1+28d
5a1+10d
=
20d
5d
=4,
故選D.
點評:本題考查了等差數(shù)列通項公式和前n項和公式的簡單應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,若-a7<a1<-a8,則必定有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且滿足a2=6,S5=50,數(shù)列{bn}的前n項和Tn滿足Tn+
1
2
bn=1

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:數(shù)列{bn}為等比數(shù)列;
(Ⅲ)記cn=
1
4
anbn
,數(shù)列{cn}的前n項和為Rn,若Rn<λ對n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前2006項的和S2006=2008,其中所有的偶數(shù)項的和是2,則a1003的值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,a1=1;等比數(shù)列{bn}中,b1=1.若a3+S3=14,b2S2=12
(Ⅰ)求an與bn;
(Ⅱ)設cn=an+2bn(n∈N*),數(shù)列{cn}的前n項和為Tn.若對一切n∈N*不等式Tn≥λ恒成立,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,則a5+a6>0是S8≥S2的(  )
A、充分而不必要條件B、必要而不充分條件C、充分必要條件D、既不充分也不必要條件

查看答案和解析>>

同步練習冊答案