【題目】選修4-4 極坐標與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為 (其中為參數(shù)).以坐標原點為極點, 軸正半軸為極軸建立極坐標系并取相同的單位長度,圓 的極坐標方程為.
(1)求曲線的方程普通方程和的直角坐標方程;
(2)過圓的圓心,傾斜角為的直線與曲線交于A,B兩點,求
的值
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù),,直線的參數(shù)方程為 為參數(shù)).
(1)若與相交,求實數(shù)的取值范圍;
(2)若,設點在曲線上,求點到的距離的最大值,并求此時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)設函數(shù),討論函數(shù)在區(qū)間內(nèi)的零點個數(shù);
(2)若對任意,總存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請將上表數(shù)據(jù)補充完整,填寫在相應位置,并求出函數(shù)的解析式;
(2)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了研究期中考試前學生所做數(shù)學模擬試題的套數(shù)與考試成績的關系,統(tǒng)計了五個班做的模擬試卷套數(shù)量及期中考試的平均分如下:
套(x) | 7 | 6 | 6 | 5 | 6 |
數(shù)學平均分(y) | 125 | 120 | 110 | 100 | 115 |
(Ⅰ) 若x與y成線性相關,則某班做了8套模擬試題,預計平均分為多少?
(2)期中考試對學生進行獎勵,考入年級前200名,獲一等獎學金500元;考入年級201—500 名,獲二等獎學金300元;考入年級501名以后的學生生將不能獲得獎學金。甲、乙兩名學生獲一等獎學金的概率均為,獲二等獎學金的概率均為,.若甲、乙兩名學生獲得每個等級的獎學金是相互獨立的,求甲、乙兩名學生所獲得獎學金總金額X 的分布列及數(shù)學期望。
附: , 。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點為橢圓的右焦點,點在橢圓上,已知橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過右焦點的直線與橢圓相交于,兩點,記三條邊所在直線的斜率的乘積為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年春節(jié),“搶紅包”成為社會熱議的話題之一.某機構對春節(jié)期間用戶利用手機“搶紅包”的情況進行調(diào)查,如果一天內(nèi)搶紅包的總次數(shù)超過10次為“關注點高”,否則為“關注點低”,調(diào)查情況如下表所示:
關注點高 | 關注點低 | 總計 | |
男性用戶 | 5 | ||
女性用戶 | 7 | 8 | |
總計 | 10 | 16 |
(1)把上表補充完整,并判斷能否在犯錯誤的概率不超過0.05的前提下認為性別與關注點高低有關?
(2)現(xiàn)要從上述男性用戶中隨機選出3名參加一項活動,以表示選中的男性用戶中搶紅包總次數(shù)超過10次的人數(shù),求隨機變量的分布列及數(shù)學期望.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
獨立性檢驗統(tǒng)計量,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com