9.棱長為a的正四面體的四個(gè)頂點(diǎn)都在同一個(gè)球面上,若過該球球心的一個(gè)截面如圖所示,并且圖中三角形(正四面體的截面)的面積是3$\sqrt{2}$,則a等于(  )
A.2$\sqrt{2}$B.$\sqrt{2}$C.2$\sqrt{3}$D.$\sqrt{3}$

分析 將截面圖轉(zhuǎn)化為立體圖,求三角形面積就是求正四面體中的△ABD的面積.

解答 解:如圖球的截面圖就是正四面體中的△ABD,
已知正四面體棱長為a
所以AD=$\frac{\sqrt{3}}{2}$a,AC=$\frac{a}{2}$
所以CD=$\sqrt{\frac{3}{4}{a}^{2}-\frac{{a}^{2}}{4}}$=$\frac{\sqrt{2}}{2}$a
截面面積是:$\frac{1}{2}×a×\frac{\sqrt{2}}{2}a=3\sqrt{2}$,
∴a=2$\sqrt{3}$.
故選:C.

點(diǎn)評 本題考查球內(nèi)接多面體以及棱錐的特征,考查空間想象能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.用列舉法表示下列集合.
(1)A={y|y=-2x2+7,x∈N,y∈N};
(2)B={(x,y)|y=-2x2+7,x∈N,y∈N}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.兩個(gè)變量y與x的4個(gè)不同回歸模型中,它們的相關(guān)系數(shù)r如下,其中擬合效果最好的模型是( 。
A.模型2的相關(guān)系數(shù)r為0.88B.模型1的相關(guān)系數(shù)r為-0.99
C.模型3的相關(guān)系數(shù)r為0.50D.模型4的相關(guān)系數(shù)r為-0.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=$\sqrt{3}$sinxcosx+3sin2x-$\frac{3}{2}$.
(1)求f(x)的最小正周期;
(2)求y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ex+ax2+bx+c,a,b,c∈R.
(1)若曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為3x-y+2=0,求b,c的值;
(2)若b=0,且f(x)在$[{\frac{1}{2},+∞})$上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.解關(guān)于x的不等式:ax2+4>2x+2ax(0≤a<2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2-x+a,a∈R,
(1)當(dāng)a=2時(shí),解不等式f(x)>3;
(2)若函數(shù)f(x)有最大值-2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知tanα=3,計(jì)算:
(Ⅰ)$\frac{4sinα-2cosα}{5cosα+3sinα}$;
(Ⅱ)sinα•cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在(1-2x)4的展開式中含x3項(xiàng)的系數(shù)為-32.

查看答案和解析>>

同步練習(xí)冊答案