【題目】如圖所示,在△ABC中,AC=BC=AB,四邊形ABED是正方形,平面ABED⊥底面ABC,G,F分別是EC,BD的中點(diǎn).
(1)求證:GF∥平面ABC;
(2)求證:平面DAC⊥平面EBC.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)連接AE,證明GF∥AC,然后通過(guò)直線與平面平行的判定定理,證明GF∥平面ABC;
(2)由四邊形ADEB為正方形,證得EB⊥AB,得出以BE⊥AC,證得AC⊥平面EBC,進(jìn)而得到平面DAC⊥平面EBC.
(1)連接AE,
因?yàn)樗倪呅?/span>ADEB為正方形,所以AE∩BD=F,且F是AE的中點(diǎn),
因?yàn)?/span>G是EC的中點(diǎn),所以GF∥AC.
又AC平面ABC,GF平面ABC,所以GF∥平面ABC.
(2)因?yàn)樗倪呅?/span>ADEB為正方形,所以EB⊥AB,
又因?yàn)槠矫?/span>ABED⊥平面ABC,平面ABED∩平面ABC=AB,BE平面ABED,
所以BE⊥平面ABC,所以BE⊥AC,
因?yàn)?/span>CA2+CB2=AB2,所以AC⊥BC,
又因?yàn)?/span>BC∩BE=B,BC,BE平面EBC,所以AC⊥平面EBC,
因?yàn)?/span>AC平面DAC,
所以平面DAC⊥平面EBC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)(k>0)
(1)若f(x)>m的解集為{x|x<-3,或x>-2},求不等式5mx2+kx+3>0的解集;
(2)若存在x>3,使得f(x)>1成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】推進(jìn)垃圾分類處理,是落實(shí)綠色發(fā)展理念的必然選擇,也是打贏污染防治攻堅(jiān)戰(zhàn)的重要環(huán)節(jié).為了解居民對(duì)垃圾分類的了解程度某社區(qū)居委會(huì)隨機(jī)抽取1000名社區(qū)居民參與問(wèn)卷測(cè)試,并將問(wèn)卷得分繪制頻率分布表如表:
得分 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
男性人數(shù) | 40 | 90 | 120 | 130 | 110 | 60 | 30 |
女性人數(shù) | 20 | 50 | 80 | 110 | 100 | 40 | 20 |
(1)從該社區(qū)隨機(jī)抽取一名居民參與問(wèn)卷測(cè)試試估計(jì)其得分不低于60分的概率:
(2)將居民對(duì)垃圾分類的了解程度分為“比較了解”(得分不低于60分)和“不太了解”(得分低于60)兩類,完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為“居民對(duì)垃圾分類的了解程度”與“性別”有關(guān)?
不太了解 | 比較了解 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) |
(3)從參與問(wèn)卷測(cè)試且得分不低于80分的居民中,按照性別進(jìn)行分層抽樣,共抽取10人,現(xiàn)從這10人中隨機(jī)抽取3人作為環(huán)保宣傳隊(duì)長(zhǎng),設(shè)3人中男性隊(duì)長(zhǎng)的人數(shù)為,求的分布列和期望.
附:.
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的多面體ABCDE中,已知ABCD是邊長(zhǎng)為2的正方形,平面ABCD⊥平面ABE,∠AEB=90°,AE=BE.
(1)若M是DE的中點(diǎn),試在AC上找一點(diǎn)N,使得MN∥平面ABE,并給出證明;
(2)求多面體ABCDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)定義在上的函數(shù)和常數(shù),,若恒成立,則稱為函數(shù)的一個(gè)“凱森數(shù)對(duì)”.
(1)若是的一個(gè)“凱森數(shù)對(duì)”,且,求;
(2)已知函數(shù)與的定義域都為,問(wèn)它們是否存在“凱森數(shù)對(duì)”?分別給出判斷并說(shuō)明理由;
(3)若是的一個(gè)“凱森數(shù)對(duì)”,且當(dāng)時(shí),,求在區(qū)間上的不動(dòng)點(diǎn)個(gè)數(shù)(函數(shù)的不動(dòng)點(diǎn)即為方程的解).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (為自然對(duì)數(shù)的底數(shù))
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)且時(shí),在上為減函數(shù),求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若存在區(qū)間,使得,則稱函數(shù)為“可等域函數(shù)”,區(qū)間A為函數(shù)的一個(gè)“可等域區(qū)間”.給出下列四個(gè)函數(shù):①;②;③;④.其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”的個(gè)數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代中的“禮、樂(lè)、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,指數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有( )
A.12種B.24種C.36種D.48種
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com