如圖,是圓柱體的一條母線,過底面圓的圓心,是圓上不與點(diǎn)、重合的任意一點(diǎn),已知棱,

(1)求證:;
(2)將四面體繞母線轉(zhuǎn)動一周,求的三邊在旋轉(zhuǎn)過程中所圍成的幾何體的體積.

(1)詳見解析。(2)

解析試題分析:(1)由母線垂直于底面可得,由直徑所對的圓周角為,可得,根據(jù)線面垂直的判定定理可得。(2)在旋轉(zhuǎn)過程中形成兩個(gè)圓錐,所求體積即為兩圓錐的體積的差。
試題解析:解:(1)證明:因?yàn)辄c(diǎn)在以為直徑的圓上,所以,       2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e4/e/1fikv4.png" style="vertical-align:middle;" />,,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/03/d/lkagb1.png" style="vertical-align:middle;" />
從而有                      6分
(2)由題意可知,所求體積是兩個(gè)圓錐體的體積之差,
 ,
故所求體積為                        12分
考點(diǎn):1線面垂直;2圓錐的體積。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的多面體中,是菱形,是矩形,,

(1)求證:平;
(2)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示是一幾何體的直觀圖、正(主)視圖、側(cè)(左)視圖、俯視圖.

(1)若FPD的中點(diǎn),求證:AF⊥面PCD;
(2)求幾何體BECAPD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形ABCD是邊長為2的正方形,直線l與平面ABCD平行,EFl上的兩個(gè)不同點(diǎn),且EAED,FBFC.E′和F′是平面ABCD內(nèi)的兩點(diǎn),EE′和FF′都與平面ABCD垂直.

(1)證明:直線EF′垂直且平分線段AD;
(2)若∠EAD=∠EAB=60 °,EF=2.求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,ABAD,點(diǎn)E在線段AD上,且CEAB.

(1)求證:CE⊥平面PAD
(2)若PAAB=1,AD=3,CD,∠CDA=45°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直三棱柱中,,,D為BC的中點(diǎn).

(1)求證:∥面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,長方體中,為線段的中點(diǎn),.

(Ⅰ)證明:⊥平面
(Ⅱ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖在長方體中,,,,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn).

(1)求長方體的體積;
(2)若,,求異面直線所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形均為菱形,設(shè)相交于點(diǎn),若,且.

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案