【題目】我們可以用隨機(jī)模擬的方法估計(jì)的值,如圖程序框圖表示其基本步驟(函數(shù)是產(chǎn)生隨機(jī)數(shù)的函數(shù),它能隨機(jī)產(chǎn)生內(nèi)的任何一個(gè)實(shí)數(shù)).若輸出的結(jié)果為,則由此可估計(jì)的近似值為( )
A. 3.119 B. 3.124 C. 3.132 D. 3.151
【答案】B
【解析】
根據(jù)函數(shù)的定義知,每次循環(huán)產(chǎn)生的和,是大小屬于區(qū)間的兩個(gè)隨機(jī)數(shù),而判斷語句,即在直角坐標(biāo)系下判斷每次產(chǎn)生的隨機(jī)數(shù),形成的點(diǎn),是不是在以原點(diǎn)為圓心,半徑為,的圓內(nèi),因?yàn)?/span>和,所以當(dāng)和滿足時(shí),點(diǎn)會(huì)落在圓在第一象限的圓內(nèi)。而隨機(jī)數(shù),形成的點(diǎn)可以看成以原點(diǎn)為頂點(diǎn),邊長為,圖象在第一象限的正方形內(nèi)任意一點(diǎn).由題意知,程序框圖共執(zhí)行循環(huán)語句次,輸出,代表判斷語句為是的次數(shù)為,即隨機(jī)數(shù)和在圓內(nèi)次數(shù)為,根據(jù)隨機(jī)數(shù)和在正方形內(nèi)等概率分布和圓的面積公式可得:,解得.故本題正確答案為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,,Sn=n2an-n(n-1),n=1,2,…
(1)證明:數(shù)列{Sn}是等差數(shù)列,并求Sn;
(2)設(shè),求證 :b1+b2+…+bn<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐P—ABC中,PC底面ABC,AB=BC,D、F分別為AC、PC的中點(diǎn),DEAP于E。(1)求證:AP平面BDE;(2)求證:平面BDE平面BDF;(3)若AE:EP=1:2,求截面BEF分三棱錐P—ABC所成上、下兩部分的體積比。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的平面圖形中,ABCD是邊長為2的正方形,△HDA和△GDC都是以D為直角頂點(diǎn)的等腰直角三角形,點(diǎn)E是線段GC的中點(diǎn).現(xiàn)將△HDA和△GDC分別沿著DA,DC翻折,直到點(diǎn)H和G重合為點(diǎn)P.連接PB,得如圖的四棱錐.
(Ⅰ)求證:PA//平面EBD;
(Ⅱ)求二面角大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為上的偶函數(shù), 為上的奇函數(shù),且.
(1)求的解析式;
(2)若函數(shù)在上只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高職院校進(jìn)行自主招生文化素質(zhì)考試,考試內(nèi)容為語文、數(shù)學(xué)、英語三科,總分為200分.現(xiàn)從上線的考生中隨機(jī)抽取20人,將其成績用莖葉圖記錄如下:
男 | 女 | |||||||||||
15 | 6 | |||||||||||
5 | 4 | 16 | 3 | 5 | 8 | |||||||
8 | 2 | 17 | 2 | 3 | 6 | 8 | 8 | 8 | ||||
6 | 5 | 18 | 5 | 7 | ||||||||
19 | 2 | 3 |
(Ⅰ)計(jì)算上線考生中抽取的男生成績的方差;(結(jié)果精確到小數(shù)點(diǎn)后一位)
(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會(huì),求所選考生恰為一男一女的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求與圓心在直線上,且過點(diǎn)A(2,-3),B(-2,-5)的圓C的方程.
(2)設(shè)是圓C上的點(diǎn),求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知函數(shù)f(x)(x∈R)是奇函數(shù),且當(dāng)x>0時(shí),f(x)=2x-1,求函數(shù)f(x)的解析式.
(2)已知x+y=12,xy=9且x<y,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P={x|a+1≤x≤2a+1},Q={x|1≤2x+5≤15}.
(1)已知a=3,求(RP)∩Q;
(2)若P∪Q=Q,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com