設(shè)α、β、γ∈(0,
π
2
)且sinα+sinγ=sinβ,cosα+cosγ=cosβ,則α-β=
π
3
π
3
分析:依題意,利用sin2γ+cos2γ=1即可求得α-β.
解答:解:∵sinα+sinγ=sinβ,cosα+cosγ=cosβ,γ∈(0,
π
2
),
∴sinγ=sinβ-sinα,
cosγ=cosβ-cosα>0,
∴cosβ>cosα,故0<β<α<
π
2
,
∴α-β>0;①
∵sin2γ+cos2γ=(sinβ-sinα)2+(cosβ-cosα)2=1,
即2-2sinβsinα-2cosβcosα=1,
∴cos(α-β)=
1
2
;
∵α、β∈(0,
π
2
),
∴-
π
2
<α-β<
π
2

由①②得0<α-β<
π
2
,
∴α-β=
π
3

故答案為:
π
3
點評:本題考查兩角和與差的余弦函數(shù),由sin2γ+cos2γ=1作為突破口是關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,a2-c2=
3
ab-b2
,S△ABC=2.
(1)求
CA
CB
的值;
(2)設(shè)函數(shù)y=sin(ωx+φ),(其中φ∈[0,
π
2
],ω>0)
,最小正周期為π,當(dāng)x等于角C時函數(shù)取到最大值,求使該函數(shù)取最小值時的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
,(x≥0)
-x,(x<0)
,則g(x)=x2+f(x)x-2的單調(diào)遞增區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的弦與過弦的端點的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點,則過弦的端點的兩條切線的交點在其準(zhǔn)線上.設(shè)拋物線y2=2px(p>0),弦AB過焦點,△ABQ為其阿基米德三角形,則△ABQ的面積的最小值為( 。
A、
p2
2
B、p2
C、2p2
D、4p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•浦東新區(qū)二模)已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點到焦點的距離為5.
(1)求拋物線C的方程.
(2)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),M是弦AB的中點,過M作平行于x軸的直線交拋物線C于點D,得到△ABD;再分別過弦AD、BD的中點作平行于x軸的直線依次交拋物線C于點E,F(xiàn),得到△ADE和△BDF;按此方法繼續(xù)下去.
解決下列問題:
①求證:a2=
16(1-kb)k2
;
②計算△ABD的面積S△ABD
③根據(jù)△ABD的面積S△ABD的計算結(jié)果,寫出△ADE,△BDF的面積;請設(shè)計一種求拋物線C與線段AB所圍成封閉圖形面積的方法,并求出此封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合P={x|x2+x-6=0},則集合P的元素個數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案