分析:(1)由
| 3tSn-(2t+3)Sn-1=3t(n≥2) | 3tSn-1-(2t+3)Sn-2=3t(n≥3) |
| |
可求得
=
(n=3,4,…),又a
1=1,a
2=
,可證數(shù)列{a
n}是首項為1,公比為
的等比數(shù)列;
(2)依題意可求得f(t)=
+
,b
n=f(
)=
,可知數(shù)列{b
2n-1}與{b
2n}是首項分別為1和
,公差均為
的等差數(shù)列,且b
2n=
,從而可求得b
1b
2-b
2b
3+b
3b
4-…+b
2n-1b
2n-b
2nb
2n+1;
(3)可求得c
n=-
,
=-
,數(shù)列{
}的前n項和為-
,對k
≥(7-2n)T
n(n∈N
+)化簡得k≥
對任意n∈N
*恒成立,再構(gòu)造函數(shù)d
n=
,對n分類討論,研究函數(shù),{d
n}與{c
n}的單調(diào)性即可求得k的取值范圍.
解答:解:(1)由S
1=a
1=1,S
2=a
1+a
2=1+a
2,得3t(1+a
2)-(2t+3)=3t,則a
2=
,于是
=
,
又
| 3tSn-(2t+3)Sn-1=3t | 3tSn-1-(2t+3)Sn-2=3t |
| |
兩式相減得3ta
n-(2t+3)a
n-1=0,
于是
=
(n=3,4,…)
因此,數(shù)列{a
n}是首項為1,公比為
的等比數(shù)列.
(2)按題意,f(t)=
=
+
,
故b
n=f(
)=
+b
n-1⇒b
n=1+
(n-1)=
,
由b
n=
,可知數(shù)列{b
2n-1}與{b
2n}是首項分別為1和
,公差均為
的等差數(shù)列,且b
2n=
,
于是b
1b
2-b
2b
3+b
3b
4-…+b
2n-1b
2n-b
2nb
2n+1=b
2(b
1-b
3)+b
4(b
3-b
5)+…+b
2n(b
2n-1-b
2n+1)
=-
(b
2+b
4+…+b
2n)
=-
(2n
2+3n)
(3)c
n=log
3a
1+log
3a
2+…+log
3a
n=-(1+2+3+…+n)
=-
.
故
=-
=-2(
-
).
T
n=
+
+…+
=-2[(1-
)+(
-
)+…+(
-
)]
=-
.
所以數(shù)列{
}的前n項和為-
.化簡得k≥
對任意n∈N
*恒成立.
設(shè)d
n=
,則d
n+1-d
n=
-
=
.
當(dāng)n≥5,d
n+1≤d
n,{d
n}為單調(diào)遞減數(shù)列,1≤n<5,d
n+1>d
n,{d
n}為單調(diào)遞增數(shù)列.
當(dāng)n≥5,c
n+1≤c
n,{c
n}為單調(diào)遞減數(shù)列,當(dāng)1≤n<5,c
n+1>c
n,{c
n}為單調(diào)遞增數(shù)列.
=d
4<d
5=
,所以,n=5時,d
n取得最大值為
.
所以,要使k≥
對任意n∈N
*恒成立,k≥
.
點評:本題考查等比關(guān)系的確定,考查數(shù)列與不等式的綜合,突出考查等差數(shù)列的求和與等比數(shù)列的證明,考查化歸思想與分類討論思想,屬于難題.