【題目】數(shù)列,定義為數(shù)列的一階差分數(shù)列,其中.
(1)若,試斷是否是等差數(shù)列,并說明理由;
(2)若證明是等差數(shù)列,并求數(shù)列的通項公式;
(3)對(2)中的數(shù)列,是否存在等差數(shù)列,使得對一切都成立,若存在,求出數(shù)列的通項公式;若不存在,請說明理由.
【答案】(1)是等差數(shù)列,理由見解析;(2)證明見解析,;(3)存在,且.
【解析】
(1)通過計算證得是等差數(shù)列.
(2)根據(jù),得到,利用湊配法證得是等差數(shù)列,并求得數(shù)列的通項公式.
(3)先求得,由此求得,再利用組合數(shù)公式,證得符合要求.
(1)由于,所以,所以,且.所以是首項為,公差為的等差數(shù)列.
(2)由于,,所以,即,兩邊除以得,所以是首項為,公差為的等差數(shù)列,故,即.
(3)存在,且符合題意.
依題意.當時,;當時,,即,而是等差數(shù)列,故只能.下證符合題意.
由于,所以根據(jù)組合數(shù)公式有符合題意.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù)).
(Ⅰ)討論極值點的個數(shù);
(Ⅱ)若是的一個極值點,且,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面內(nèi)兩條直線和相交于點,構成的四個角中的銳角為.對于平面上任意一點,若,分別是到直線和的距離,則稱有序非負實數(shù)對是點的“距離坐標”,給出下列四個命題:
①點有且僅有兩個;
②點有且僅有4個;
③若,則點的軌跡是兩條過點的直線;
④滿足的所有點位于一個圓周上.
其中正確命題的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論在上的零點個數(shù);
(2)當時,若存在,使,求實數(shù)的取值范圍.(為自然對數(shù)的底數(shù),其值為2.71828……)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)統(tǒng)計,用于數(shù)學學習的時間(單位:小時)與成績(單位:分)近似于線性相關關系.對某小組學生每周用于數(shù)學的學習時間與數(shù)學成績進行數(shù)據(jù)收集如下:
由樣本中樣本數(shù)據(jù)求得回歸直線方程為,則點與直線的位置關系是( )
A. B.
C. D. 與的大小無法確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代數(shù)學經(jīng)典名著,其中有這樣一個問題:“今有圓材,埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?”其意為:今有-圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該木材,鋸口深一寸,鋸道長-尺.問這塊圓柱形木材的直徑是多少?現(xiàn)有長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).已知弦尺,弓形高寸,估算該木材鑲嵌在墻體中的體積約為__________立方寸.(結果保留整數(shù))
注:l丈=10尺=100寸,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的極坐標方程是,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C經(jīng)過伸縮變換得到曲線E,直線l:(t為參數(shù))與曲線E交于A,B兩點,
(1)設曲線C上任一點為,求的最小值;
(2)求出曲線E的直角坐標方程,并求出直線l被曲線E截得的弦AB長;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com