已知橢圓E:
x2
a2
+y2=1(a>1)
,過(guò)點(diǎn)A(0,-1)和B(a,0)的直線與原點(diǎn)的距離為
3
2

(Ⅰ)求橢圓E的方程;
(Ⅱ)直線l:y=kx+1與橢圓E交于C、D兩點(diǎn),以線段CD為直徑的圓過(guò)點(diǎn)M(-1,0),求直線l的方程.
分析:(Ⅰ)求得直線AB的方程為:x-ay-a=0,利用過(guò)點(diǎn)A(0,-1)和B(a,0)的直線與原點(diǎn)的距離為
3
2
,求得a的值,即可得到橢圓E的方程;
(Ⅱ)將直線l:y=kx+1代入橢圓E,消元可得(1+3k2)x2+6kx=0,求得C,D的坐標(biāo),利用
MC
MD
=0
,即可求得直線l的方程.
解答:解:(Ⅰ)由題意,直線AB的方程為:x-ay-a=0
∵過(guò)點(diǎn)A(0,-1)和B(a,0)的直線與原點(diǎn)的距離為
3
2
,
a
a2+1
=
3
2

∴a=
3

∴橢圓E的方程為
x2
3
+y2=1
;
(Ⅱ)設(shè)C(x1,y1),D(x2,y2),將直線l:y=kx+1代入橢圓E,消元可得(1+3k2)x2+6kx=0
∴x1=0,x2=-
6k
1+3k2

∴y1=1,y2=
1-3k2
1+3k2
,
∵以線段CD為直徑的圓過(guò)點(diǎn)M(-1,0),
MC
MD
=0

∴(x1+1)(x2+1)+y1y2=0
-
6k
1+3k2
+1+
1-3k2
1+3k2
=0

k=
1
3

∴直線l的方程為y=
1
3
x+1
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,將直線與橢圓方程聯(lián)立是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0),焦點(diǎn)為F1、F2,雙曲線G:x2-y2=m(m>0)的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P是雙曲線G上異于頂點(diǎn)的任一點(diǎn),直線PF1、PF2與橢圓的交點(diǎn)分別為A、B和C、D,已知三角形ABF2的周長(zhǎng)等于8
2
,橢圓四個(gè)頂點(diǎn)組成的菱形的面積為8
2

(1)求橢圓E與雙曲線G的方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1和k2,探求k1和k2的關(guān)系;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,試求出λ的值;若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0),以F1(-c,0)為圓心,以a-c為半徑作圓F1,過(guò)點(diǎn)B2(0,b)作圓F1的兩條切線,設(shè)切點(diǎn)為M、N.
(1)若過(guò)兩個(gè)切點(diǎn)M、N的直線恰好經(jīng)過(guò)點(diǎn)B1(0,-b)時(shí),求此橢圓的離心率;
(2)若直線MN的斜率為-1,且原點(diǎn)到直線MN的距離為4(
2
-1),求此時(shí)的橢圓方程;
(3)是否存在橢圓E,使得直線MN的斜率k在區(qū)間(-
2
2
,-
3
3
)內(nèi)取值?若存在,求出橢圓E的離心率e的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
3
=1
(a
3
)的離心率e=
1
2
.直線x=t(t>0)與曲線 E交于不同的兩點(diǎn)M,N,以線段MN 為直徑作圓 C,圓心為 C.
 (1)求橢圓E的方程;
 (2)若圓C與y軸相交于不同的兩點(diǎn)A,B,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•佛山二模)已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)交點(diǎn)為F1(-
3
,0)
,而且過(guò)點(diǎn)H(
3
1
2
)

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓E的上下頂點(diǎn)分別為A1,A2,P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2分別交x軸于點(diǎn)N,M,若直線OT與過(guò)點(diǎn)M,N的圓G相切,切點(diǎn)為T.證明:線段OT的長(zhǎng)為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+y2=1
(a>1)的離心率e=
3
2
,直線x=2t(t>0)與橢圓E交于不同的兩點(diǎn)M、N,以線段MN為直徑作圓C,圓心為C
(Ⅰ)求橢圓E的方程;
(Ⅱ)當(dāng)圓C與y軸相切的時(shí)候,求t的值;
(Ⅲ)若O為坐標(biāo)原點(diǎn),求△OMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案