1.用反證法證明命題“設(shè)a,b為實數(shù),則函數(shù)f(x)=x3+ax+b至少有一個極值點”時,要作的假設(shè)是( 。
A.函數(shù)f(x)=x3+ax+b恰好有兩個極值點B.函數(shù)f(x)=x3+ax+b至多有兩個極值點
C.函數(shù)f(x)=x3+ax+b沒有極值點D.函數(shù)f(x)=x3+ax+b至多有一個極值點

分析 直接利用命題的否定寫出假設(shè)即可.

解答 解:反證法證明問題時,反設(shè)實際是命題的否定,
∴用反證法證明命題“設(shè)a,b為實數(shù),則函數(shù)f(x)=x3+ax+b至少有一個極值點”時,要做的假設(shè)是:函數(shù)f(x)=x3+ax+b沒有極值點.
故選:C

點評 本題考查反證法證明問題的步驟,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.不等式|x-x2-2|>x2-3x-4的解集是(-3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.對于定義域為D的函數(shù)f(x)=k+$\sqrt{x+2}$,滿足存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域為[a,b],求實數(shù)k的取值范圍$(-\frac{9}{4},-2]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax-lnx.
(1)求f(x)的單調(diào)區(qū)間;
(2)若方程f(x)=0恰有兩解,求實數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=2cos2($\frac{π}{4}$-$\frac{x}{2}}$),x∈[0,2π]的遞減區(qū)間為(  )
A.[0,π]B.[$\frac{π}{2}$,π]C.[${\frac{π}{3}$,$\frac{5π}{3}}$]D.[$\frac{π}{2}$,$\frac{3π}{2}}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.閱讀如圖所示的程序框圖,若輸入P=2013,則輸出的S是$\frac{2013}{2014}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=x3+bx2+cx+d在區(qū)間[-1,2]上是減函數(shù),則( 。
A.2b+c有最大值9B.2b+c有最小值9C.2b+c有最大值-9D.2b+c有最小值-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知x=2+i,設(shè)M=1-${C}_{4}^{1}$x+${C}_{4}^{2}$x2-${C}_{4}^{3}$x3+${C}_{4}^{4}$x4,則M的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為4,3,則輸出v的值為( 。
A.20B.61C.183D.548

查看答案和解析>>

同步練習(xí)冊答案