精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=|2x-1-1|.
(1)作出函數y=f(x)的圖象;
(2)若a<c,且f(a)>f(c),求證:2a+2c<4.

(1)

(2)見解析

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點為圓心的兩個同心圓弧、弧以及兩條線段圍成的封閉圖形.花壇設計周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米(),圓心角為弧度.

(1)求關于的函數關系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,當為何值時,取得最大值?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲廠以x千克/小時的速度運輸生產某種產品(生產條件要求1≤x≤10),每小時可獲得利潤是100(5x+1-)元.
(1)要使生產該產品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產900千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=lg(ax-bx)(a>1>b>0).
(1)求函數y=f(x)的定義域;
(2)在函數y=f(x)的圖象上是否存在不同的兩點,使過此兩點的直線平行于x軸;
(3)當a、b滿足什么關系時,f(x)在區(qū)間上恒取正值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

要制作一個如圖的框架(單位:m),要求所圍成的總面積為19.5(m2),其中ABCD是一個矩形,EFCD是一個等腰梯形,梯形高h=AB,tan∠FED=,設AB=xm,BC=y(tǒng)m.
 
(1)求y關于x的表達式;
(2)如何設計x、y的長度,才能使所用材料最少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知冪函數y=f(x)經過點.
(1)試求函數解析式;
(2)判斷函數的奇偶性并寫出函數的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=mx+3,g(x)=x2+2x+m.
(1)求證:函數f(x)-g(x)必有零點;
(2)設函數G(x)=f(x)-g(x)-1,若|G(x)|在[-1,0]上是減函數,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義在R上的函數及二次函數滿足:。
(1)求的解析式;
(2);
(3)設,討論方程的解的個數情況.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2bxc(b,c∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當x≥0時,f(x)≤(xc)2
(2)若對滿足題設條件的任意b,c,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

查看答案和解析>>

同步練習冊答案