11.已知函數(shù)$f(x)=x+\frac{4}{x}$,$g(x)={log_a}({{x^2}-2x+3})$,其中a>0,且a≠1.
(Ⅰ)用定義證明函數(shù)f(x)在[2,+∞)是增函數(shù);
(Ⅱ)若對(duì)于任意的x0∈[2,4],總存在x1∈[0,3],使得f(x0)=g(x1)成立,求實(shí)數(shù)a的取值范圍.

分析 (Ⅰ)設(shè)2≤x1<x2,計(jì)算f(x1)-f(x2),判斷f(x1)與f(x2)的大小關(guān)系,得出結(jié)論,
(Ⅱ)問(wèn)題等價(jià)于f(x)的值域?yàn)間(x)的值域的子集,利用導(dǎo)數(shù)可分別求得兩函數(shù)的值域,根據(jù)集合包含關(guān)系可得不等式組,解出即可

解答 (Ⅰ)證明:設(shè)2≤x1<x2,則f(x1)-f(x2)=x1+$\frac{4}{{x}_{1}}$-(x2+$\frac{4}{{x}_{2}}$)=x1-x2+$\frac{4({x}_{2}-{x}_{1})}{{x}_{1}{x}_{2}}$=(x1-x2)($\frac{{x}_{1}{x}_{2}-4}{{x}_{1}{x}_{2}}$)
∵2≤x1<x2,∴x1-x2<0,x1x2>4,
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴f(x)=x+$\frac{4}{x}$在(1,+∞)上是增函數(shù).
(Ⅱ)設(shè)t(x)=x2-2x+3=(x-1)2+2,
∴t(x)在[0,1]上單調(diào)遞增,(1,3]上單調(diào)遞減,
∴t(x)∈[2,6],
當(dāng)a>1時(shí),g(x)的值域?yàn)閇loga2,loga6],
當(dāng)0<a<1時(shí),g(x)的值域?yàn)閇loga6,loga2]
由(Ⅰ)知f(x)∈[4,5],
∵任意的x0∈[2,4],總存在x1∈[0,3],使得f(x0)=g(x1)成立,
當(dāng)a>1時(shí),$\left\{\begin{array}{l}{lo{g}_{a}2≤4}\\{lo{g}_{a}6≥5}\end{array}\right.$,解得${2}^{\frac{1}{4}}$≤a≤${6}^{\frac{1}{5}}$,
當(dāng)0<a<1時(shí),$\left\{\begin{array}{l}{lo{g}_{a}6≤4}\\{lo{g}_{a}2≥5}\end{array}\right.$,此時(shí)無(wú)解,
綜上所述a的取值范圍為$[{2^{\frac{1}{4}}},{6^{\frac{1}{5}}}]$

點(diǎn)評(píng) 本題考查了函數(shù)單調(diào)性的定義證明,考查分類討論思想轉(zhuǎn)化思想,考查學(xué)生解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知拋物線${y^2}=-4\sqrt{5}x$的焦點(diǎn)與橢圓$\frac{x^2}{a^2}+\frac{y^2}{4}=1(a>0)$的一焦點(diǎn)重合,則該橢圓的離心率為$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知z=2x+y,其中實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}}\right.$,且z的最大值是最小值的2倍,則a的值是( 。
A.$\frac{2}{11}$B.$\frac{1}{4}$C.4D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若$sinα=\frac{1}{5}$,則cos2α=( 。
A.$\frac{23}{25}$B.$-\frac{2}{25}$C.$-\frac{23}{25}$D.$\frac{2}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.對(duì)于任意x∈R,函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)$-\frac{1}{2}≤x≤\frac{3}{2}$時(shí),f(x)=-|2x-1|+1.則函數(shù)y=f(x)(-2≤x≤4)與函數(shù)$g(x)=\frac{1}{x-1}$的圖象所有交點(diǎn)的橫坐標(biāo)之和等于( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=3,F(xiàn)是PD的中點(diǎn),E是線段AB上的點(diǎn).
(1)當(dāng)E是AB的中點(diǎn)時(shí),求證:AF∥平面PEC.
(2)當(dāng)AE:BE=2:1時(shí),求二面角E-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.計(jì)算:$0.25×{(\frac{1}{2})^{-2}}+lg8+3lg5$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.函數(shù)f(x)=x2+ax+3在區(qū)間[-1,1]上的最小值為-4.求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若2cos2θ+3cosθsinθ-3sin2θ=1,則tanθ=-$\frac{1}{4}$或1.

查看答案和解析>>

同步練習(xí)冊(cè)答案