設(shè)函數(shù).

(1) 試問函數(shù)f(x)能否在x= 時取得極值?說明理由;

(2) 若a= ,當(dāng)x∈[,4]時,函數(shù)f(x)與g(x)的圖像有兩個公共點,求c的取值范圍.

 

【答案】

(1)f(x)在x=-1處無極值.  (2)或c=

【解析】

試題分析:解:(1) 由題意f′(x)=x2-2ax-a,

假設(shè)在x= -1時f(x)取得極值,則有f′(-1)=1+2a-a=0,∴a=-1,

而此時,f′(x)=x2+2x+1=(x+1)2≥0,函數(shù)f(x)在R上為增函數(shù),無極值.

這與f(x)在x=-1有極值矛盾,所以f(x)在x=-1處無極值.

(2) 設(shè)f(x)=g(x),則有x3-x2-3x-c=0,∴c=x3-x2-3x,

設(shè)F(x)= x3-x2-3x,G(x)=c,令F′(x)=x2-2x-3=0,解得x1=-1或x=3.

列表如下:

x

-3

(-3,-1)

-1

(-1,3)

3

(3,4)

4

F′(x)

 

+

0

-

0

+

 

F(x)

-9

-9

-

由此可知:F(x)在(-3,-1)、(3,4)上是增函數(shù),在(-1,3)上是減函數(shù).

當(dāng)x=-1時,F(xiàn)(x)取得極大值;當(dāng)x=3時,F(xiàn)(x)取得極小值

F(-3)=F(3)=-9,而.

如果函數(shù)f(x)與g(x)的圖像有兩個公共點,則函數(shù)F(x)與G(x)有兩個公共點,

所以或c=

考點:導(dǎo)數(shù)的運(yùn)用

點評:主要是考查了導(dǎo)數(shù)在研究函數(shù)單調(diào)性以及函數(shù)極值中的運(yùn)用,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列幾個命題:
①若函數(shù)f(x)的定義域為R,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②若函數(shù)f(x)是定義域為R的奇函數(shù),對于任意的x∈R都有f(x)+f(2-x)=0,則函數(shù)f(x)的圖象關(guān)于直線x=1對稱;
③已知x1,x2是函數(shù)f(x)定義域內(nèi)的兩個值,當(dāng)x1<x2時,f(x1)>f(x2),則f(x)是減函數(shù);
④設(shè)函數(shù)y=
1-x
+
x+3
的最大值和最小值分別為M和m,則M=
2
m
;
⑤若f(x)是定義域為R的奇函數(shù),且f(x+2)也為奇函數(shù),則f(x)是以4為周期的周期函數(shù).
其中正確的命題序號是
①④⑤
①④⑤
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(
1-x
x
)=x
,則f(x)的解析式為f(x)=
1
x+1
,(x≠-1)
1
x+1
,(x≠-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=1-2sin(
π
4
-x)cos(
π
4
-x),x∈R,則該函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(
1+x
1-x
)=x
,則f(x)的表達(dá)式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉定區(qū)二模)(文)設(shè)函數(shù)y=
1-x2
的曲線繞x軸旋轉(zhuǎn)一周所得幾何體的表面積

查看答案和解析>>

同步練習(xí)冊答案