設(shè)函數(shù)
(Ⅰ)求的單調(diào)區(qū)間和極值;
(Ⅱ)若關(guān)于的方程有3個不同實(shí)根,求實(shí)數(shù)a的取值范圍.
(Ⅲ)已知當(dāng)恒成立,求實(shí)數(shù)k的取值范圍.
(Ⅰ)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是
當(dāng);當(dāng)
(Ⅱ)(Ⅲ)
【解析】
試題分析:(Ⅰ) 1分
∴當(dāng), 3分
∴的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是 5分
當(dāng);當(dāng) 7分
(Ⅱ)由(Ⅰ)的分析可知圖象的大致形狀及走向(圖略)
∴當(dāng)的圖象有3個不同交點(diǎn),
即方程有三解 9分
(Ⅲ) 11分
∵上恒成立 12分
令,由二次函數(shù)的性質(zhì),上是增函數(shù),
∴∴所求k的取值范圍是 14分
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:已知函數(shù)單調(diào)求參數(shù)范圍時,要在定義域區(qū)間上令,因在定義域范圍內(nèi)有限個導(dǎo)數(shù)等于零的點(diǎn)不影響其單調(diào)性
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年宣武區(qū)二模理)(13分)
設(shè)函數(shù)
(1)討論的單調(diào)性;
(2)求的最大值和最小值。查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年棗莊一模文)(14分)
設(shè)函數(shù)
(1)當(dāng)的單調(diào)性;
(2)若函數(shù)的取值范圍;
(3)若對于任意的上恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)
(1)求的單調(diào)增區(qū)間和單調(diào)減區(qū)間;
(2)若當(dāng)時(其中e=2.71828…),不等式恒成立,求實(shí)數(shù)m的取值范圍;
(3)若關(guān)于x的方程上恰有兩個相異的實(shí)根,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆湖北省高三年級第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù) ().
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)試通過研究函數(shù)()的單調(diào)性證明:當(dāng)時,;
(Ⅲ)證明:當(dāng),且均為正實(shí)數(shù), 時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆度河北省唐山市高三年級第一次模擬考試數(shù)學(xué)試卷 題型:解答題
設(shè)函數(shù).
(I )討論f(x)的單調(diào)性;
(II) ( i )若證明:當(dāng)x>6 時,
(ii)若方程f(x)=a有3個不同的實(shí)數(shù)解,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com