精英家教網(wǎng)如圖,某地一天從6時(shí)至14時(shí)的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+∅)+b.
(1)求這段時(shí)間的最大溫差;
(2)寫(xiě)出這段時(shí)間的函數(shù)解析式.
分析:(1)由圖象的最高點(diǎn)與最低點(diǎn)易于求出這段時(shí)間的最大溫差;
(2)A、b可由圖象直接得出,ω由周期求得,然后通過(guò)特殊點(diǎn)求φ,則問(wèn)題解決.
解答:解:(1)由圖示,這段時(shí)間的最大溫差是30-10=20℃,
(2)圖中從6時(shí)到14時(shí)的圖象是函數(shù)y=Asin(ωx+∅)+b的半個(gè)周期,
1
2
ω
=14-6
,解得ω=
π
8
,
由圖示,A=
1
2
(30-10)=10
,b=
1
2
(10+30)=20

這時(shí),y=10sin(
π
8
x+?)+20

將x=6,y=10代入上式,可取?=
4
,
綜上,所求的解析式為y=10sin(
π
8
x+
4
)+20
,x∈[6,14].
點(diǎn)評(píng):本題主要考查由函數(shù)y=Asin(ωx+∅)+b的部分圖象確定其解析式的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:101網(wǎng)校同步練習(xí) 高一數(shù)學(xué) 蘇教版(新課標(biāo)·2004年初審) 蘇教版 題型:044

如圖,某地一天從6時(shí)到14時(shí)的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+φ)+B.

(1)求這段時(shí)間的最大溫差;

(2)寫(xiě)出這段曲線的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某地一天從6時(shí)到14時(shí)的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+φ)+b.

(1)求這段時(shí)間的最大溫差.Y

(2)寫(xiě)出這段曲線的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某地一天從6時(shí)到14時(shí)的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+φ)+B.(1)求這段時(shí)間的最大溫差;

(2)寫(xiě)出這段曲線的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某地一天從6時(shí)到14時(shí)的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+φ)+B(0≤φ<2π),則溫度變化曲線的函數(shù)解析式為_(kāi)__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年人教A版高中數(shù)學(xué)必修四1.6三角函數(shù)模型的簡(jiǎn)單應(yīng)用練習(xí)卷(解析版) 題型:解答題

如圖:某地一天從6時(shí)到14時(shí)的溫度變化曲線近似滿足函數(shù)yAsin(ωxφ)+b

(1)求這段時(shí)間的最大溫差.

(2)寫(xiě)出這段曲線的函數(shù)解析式.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案