8.已知函數(shù)f(x)=e-x-|lnx|的兩個(gè)零點(diǎn)分別為x1,x2,則( 。
A.0<x1x2<1B.x1x2=1C.1<x1x2<eD.x1x2>e

分析 利用函數(shù)的零點(diǎn),判斷零點(diǎn)的范圍,利用指數(shù)函數(shù)的單調(diào)性以及對(duì)數(shù)運(yùn)算法則,推出結(jié)果即可.

解答 解:函數(shù)f(x)=e-x-|lnx|的兩個(gè)零點(diǎn)分別為x1,x2
不妨設(shè)0<x1<1<x2,則${e}^{{-x}_{1}}>{e}^{-{x}_{2}}$,${e}^{{-x}_{1}}=-ln{x}_{1}$,${e}^{-{x}_{2}}=ln{x}_{2}$,
所以-lnx1>lnx2,ln(x1x2)<0,0<x1x2<1.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)判定定理以及函數(shù)的性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若1≤log2(x-y+1)≤2,|x-3|≤1,則x-2y的最大值與最小值之和是( 。
A.0B.-2C.2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在三棱錐A-BCD中,△ABD為邊長(zhǎng)等于$\sqrt{2}$正三角形,CD=CB=1.△ADC與△ABC是有公共斜邊AC的全等的直角三角形.
(Ⅰ)求證:AC⊥BD;
(Ⅱ)求D點(diǎn)到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=2ln(x+1)+$\frac{1}{2}m{x^2}$-(m+1)x有且只有一個(gè)極值.
(Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)若f(x1)=f(x2)(x1≠x2),求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知$f(x)=\frac{lnx}{x}$,則( 。
A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e)D.f(e)>f(3)>f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知$\overrightarrow a=(sinx,cosx),\overrightarrow b=(sinx,sinx),f(x)=2\overrightarrow a•\overrightarrow b$.
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)畫出函數(shù)y=f(x)在區(qū)間$[{-\frac{π}{2},\frac{π}{2}}]$上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.要測(cè)量電視塔AB的高度,在C點(diǎn)測(cè)得塔頂?shù)难鼋鞘?5°,在D點(diǎn)測(cè)得塔頂?shù)难鼋鞘?0°,并測(cè)得水平面上的∠BCD=120°,CD=40m,則電視塔的高度是(  )
A.30mB.40mC.$40\sqrt{3}$mD.$40\sqrt{2}$m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.四棱錐P-ABCD的三視圖如圖所示,其五個(gè)頂點(diǎn)都在同一球面上,若四棱錐P-ABCD的側(cè)面積等于4(1+$\sqrt{2}$),則該外接球的表面積是( 。
A.B.12πC.24πD.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},則(∁UA)∩(
(∁UB)=(  )
A.{1,3}B.{5,6}C.{4,5,6}D.{4,5,6,7}

查看答案和解析>>

同步練習(xí)冊(cè)答案