某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為億元,其中用于風(fēng)景區(qū)改造為億元。該市決定建立生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列三個(gè)條件:①每年用于風(fēng)景區(qū)改造費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;②每年改造生態(tài)環(huán)境總費(fèi)用至少億元,至多億元;③每年用于風(fēng)景區(qū)改造費(fèi)用不得低于每年改造生態(tài)環(huán)境總費(fèi)用的15%,但不得高于每年改造生態(tài)環(huán)境總費(fèi)用的25%.
若,,請(qǐng)你分析能否采用函數(shù)模型y=作為生態(tài)環(huán)境改造投資方案.
能采用函數(shù)模型作為生態(tài)環(huán)境改造投資方案.
解析試題分析:本題主要考查利用導(dǎo)數(shù)研究簡單實(shí)際問題,考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值問題,考查函數(shù)思想,考查綜合分析和解決問題的能力和計(jì)算能力.對(duì)函數(shù)求導(dǎo),判斷導(dǎo)數(shù)恒大于0,所以得出函數(shù)是增函數(shù)滿足條件①,構(gòu)造新函數(shù),通過求導(dǎo)判斷函數(shù)的單調(diào)性,由②可知,所以判斷上函數(shù)的單調(diào)性和最值,最值符合③的要求,所以綜上可得可以采用此函數(shù)模型.
試題解析:∵,
∴函數(shù)是增函數(shù),滿足條件①,
設(shè),
則,
令,得.
當(dāng)時(shí),,在上是減函數(shù),
當(dāng)時(shí),,在上是增函數(shù),
又,即,在上是減函數(shù),在上是增函數(shù),
∴當(dāng)時(shí),有最小值為,
當(dāng)時(shí),,
當(dāng)時(shí),,
∴能采用函數(shù)模型作為生態(tài)環(huán)境改造投資方案.
考點(diǎn):1.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;2. 利用導(dǎo)數(shù)求函數(shù)的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)己知函數(shù)f (x)=ex,xR
(1)求 f (x)的反函數(shù)圖象上點(diǎn)(1,0)處的切線方程。
(2)證明:曲線y=f(x)與曲線y=有唯一公共點(diǎn);
(3)設(shè),比較與的大小,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(k為常數(shù),e=2.71828……是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與x軸平行。
(1)求k的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),其中為的導(dǎo)函數(shù),證明:對(duì)任意,。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)。
(Ⅰ)若時(shí),函數(shù)取得極值,求函數(shù)的圖像在處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間內(nèi)不單調(diào),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),.
(1)若曲線與在它們的交點(diǎn)處有相同的切線,求實(shí)數(shù)、的值;
(2)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),(為常數(shù))
(1)當(dāng)時(shí)恒成立,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)有對(duì)稱中心為A(1,0),求證:函數(shù)的切線在切點(diǎn)處穿過圖象的充要條件是恰為函數(shù)在點(diǎn)A處的切線.(直線穿過曲線是指:直線與曲線有交點(diǎn),且在交點(diǎn)左右附近曲線在直線異側(cè))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(I)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
(II)當(dāng)a≤0時(shí),討論函數(shù)f(x)的單調(diào)性;
(III)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com